The Gouméré region is located in the North-East of Côte d’Ivoire and is located in the South-West of the Bui furrow. In order to highlight the geology of the area studied, 14 samples were taken for stu...The Gouméré region is located in the North-East of Côte d’Ivoire and is located in the South-West of the Bui furrow. In order to highlight the geology of the area studied, 14 samples were taken for studies using petrographic, geochemical and metallogenic methods. The study of macroscopic and microscopic petrography made it possible to highlight two major lithological units: 1) a volcano-plutonic unit, formed of gabbros, basalt, volcaniclastics and rhyodacite;2) a sedimentary unit (microconglomerate). From a geochemical point of view, the results obtained indicate that the plutonites are gabbro and gabbro diorite while the volcanics have compositions of basaltic andesites, rhyolite and dacites. The sediments have a litharenitic to sublitharenitic character. The metallogenic study made it possible to highlight hydrothermal alterations and metalliferous paragenesis on the formations studied. Hydrothermal alteration is characterized by the presence of carbonation, silicification, sericitization, sulfidation and to a lesser degree chloritization. Metalliferous paragenesis consists of pyrite, chalcopyrite, hematite and magnetite.展开更多
Background: The department of defense's field manual(FM) 3-11 is among the military's field manuals for preparing for, reacting to and recovering from chemical, biological, radiological and nuclear attacks. Si...Background: The department of defense's field manual(FM) 3-11 is among the military's field manuals for preparing for, reacting to and recovering from chemical, biological, radiological and nuclear attacks. Since post 9-11, U.S. military service members have been deployed in the global war on terrorism. This study attempted to determine the effectiveness of the FM 3-11 in detecting, deterring or preventing a human-borne with bioagent(HBBA) terrorist breach at an entry control point(ECP).Methods: This time-specific, cross-sectional study disseminated a validated survey tool with Cronbach's α>0.82 to respondents who have had antiterrorism training and combat ECP experience. The return rate was greater than 75.0%; however, many of the respondents failed to meet the inclusion criteria. Consequently, only 26 questionnaires were included in the sample.Results: The results revealed that while over 60.0% of the respondents either strongly agreed or agreed that biointelligence, the deployment of biodetectors and the use of biowarning systems could be effective in preventing an ECP breach by a terrorist with a bioagent, the use of protective equipment and immunization to decontaminate service members or other tactics, techniques and procedures(TTPs) would never prevent a breach. A large percentage of respondents claimed that soldiers at the ECP lacked the devices or the knowledge to detect an HBBA at an ECP, and 72.0% suggested modifying current ECP TTPs to include education, training and equipment for security personnel at military base ECPs.Conclusion: If obtained from appropriate sources and communicated to the personnel at the ECP in an effective or timely manner, the possible effectiveness of certain TTPs in the FM 3-11, specifically FM 3-11.86(intelligence), might increase.展开更多
Climate change is an alarming global challenge, particularly affecting the least developed countries (LDCs) including Liberia. These countries, located in regions prone to unpredictable temperature and precipitation c...Climate change is an alarming global challenge, particularly affecting the least developed countries (LDCs) including Liberia. These countries, located in regions prone to unpredictable temperature and precipitation changes, are facing significant challenges, particularly in climate-sensitive sectors such as mining and agriculture. LDCs need more resilience to adverse climate shocks but have limited capacity for adaptation compared to other developed and developing nations. This paper examines Liberia’s susceptibility to climate change as a least developed country, focusing on its exposure, sensitivity, and adaptive capacity. It provides an overview of LDCs and outlines the global distribution of carbon dioxide emissions. The paper also evaluates specific challenges that amplify Liberia’s vulnerability and constrain sustainable adaptation, providing insight into climate change’s existing and potential effects. The paper emphasizes the urgency of addressing climate impacts on Liberia and calls for concerted local and international efforts for effective and sustainable mitigation efforts. It provides recommendations for policy decisions and calls for further research on climate change mitigation and adaptation.展开更多
文摘The Gouméré region is located in the North-East of Côte d’Ivoire and is located in the South-West of the Bui furrow. In order to highlight the geology of the area studied, 14 samples were taken for studies using petrographic, geochemical and metallogenic methods. The study of macroscopic and microscopic petrography made it possible to highlight two major lithological units: 1) a volcano-plutonic unit, formed of gabbros, basalt, volcaniclastics and rhyodacite;2) a sedimentary unit (microconglomerate). From a geochemical point of view, the results obtained indicate that the plutonites are gabbro and gabbro diorite while the volcanics have compositions of basaltic andesites, rhyolite and dacites. The sediments have a litharenitic to sublitharenitic character. The metallogenic study made it possible to highlight hydrothermal alterations and metalliferous paragenesis on the formations studied. Hydrothermal alteration is characterized by the presence of carbonation, silicification, sericitization, sulfidation and to a lesser degree chloritization. Metalliferous paragenesis consists of pyrite, chalcopyrite, hematite and magnetite.
文摘Background: The department of defense's field manual(FM) 3-11 is among the military's field manuals for preparing for, reacting to and recovering from chemical, biological, radiological and nuclear attacks. Since post 9-11, U.S. military service members have been deployed in the global war on terrorism. This study attempted to determine the effectiveness of the FM 3-11 in detecting, deterring or preventing a human-borne with bioagent(HBBA) terrorist breach at an entry control point(ECP).Methods: This time-specific, cross-sectional study disseminated a validated survey tool with Cronbach's α>0.82 to respondents who have had antiterrorism training and combat ECP experience. The return rate was greater than 75.0%; however, many of the respondents failed to meet the inclusion criteria. Consequently, only 26 questionnaires were included in the sample.Results: The results revealed that while over 60.0% of the respondents either strongly agreed or agreed that biointelligence, the deployment of biodetectors and the use of biowarning systems could be effective in preventing an ECP breach by a terrorist with a bioagent, the use of protective equipment and immunization to decontaminate service members or other tactics, techniques and procedures(TTPs) would never prevent a breach. A large percentage of respondents claimed that soldiers at the ECP lacked the devices or the knowledge to detect an HBBA at an ECP, and 72.0% suggested modifying current ECP TTPs to include education, training and equipment for security personnel at military base ECPs.Conclusion: If obtained from appropriate sources and communicated to the personnel at the ECP in an effective or timely manner, the possible effectiveness of certain TTPs in the FM 3-11, specifically FM 3-11.86(intelligence), might increase.
文摘Climate change is an alarming global challenge, particularly affecting the least developed countries (LDCs) including Liberia. These countries, located in regions prone to unpredictable temperature and precipitation changes, are facing significant challenges, particularly in climate-sensitive sectors such as mining and agriculture. LDCs need more resilience to adverse climate shocks but have limited capacity for adaptation compared to other developed and developing nations. This paper examines Liberia’s susceptibility to climate change as a least developed country, focusing on its exposure, sensitivity, and adaptive capacity. It provides an overview of LDCs and outlines the global distribution of carbon dioxide emissions. The paper also evaluates specific challenges that amplify Liberia’s vulnerability and constrain sustainable adaptation, providing insight into climate change’s existing and potential effects. The paper emphasizes the urgency of addressing climate impacts on Liberia and calls for concerted local and international efforts for effective and sustainable mitigation efforts. It provides recommendations for policy decisions and calls for further research on climate change mitigation and adaptation.