The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thr...The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thresholds in terms of the percentiles of overall precipitation instead of fixed threshold values. The impact of intensity forecast bias on the calculated threat score is reduced. The method is tested with the forecasts of a tropical storm that re-intensified after making landfall and caused heavy flooding. The forecasts are produced with and without radar data assimilation. The forecast with assimilation of both radial velocity and reflectivity produce precipitation patterns that better match observations but have large positive intensity bias. When using fixed thresholds, the neighborhood threat scores fail to yield high scores for forecasts that have good pattern match with observations, due to large intensity bias. In contrast, the percentile-based neighborhood method yields the highest score for the forecast with the best pattern match and the smallest position error. The percentile-based method also yields scores that are more consistent with object-based verifications, which are less sensitive to intensity bias, demonstrating the potential value of percentile-based verification.展开更多
Background:With an increase in the evidence for the associations between park-based physical activity(PA)and physical environments(especially park and neighborhood environments),researchers face an important challenge...Background:With an increase in the evidence for the associations between park-based physical activity(PA)and physical environments(especially park and neighborhood environments),researchers face an important challenge in interpreting and summarizing the evidence to develop environ?mental change interventions.An updated review is needed to better inform policymaking and environmental interventions.The current study aimed to systematically review the research on the associations of park-based PA with park and neighborhood environmental characteristics.Methods:We targeted English peer-reviewed articles from 5 electronic databases using keywords related to park-based PA,park environments,and neighborhood environments.Of the 4071 identified papers,25 studies published between 2008 and 2016 met all the eligibility criteria and were included in this review.Results:The characteristics of physical environment that received consistent support included paths/trails,lighting,and incivilities(e.g.,broken glasses and litter).Mixed findings were revealed for 6 park environmental factors(unspecified active facilities,playgrounds and skating areas,fit?ness stations,picnic areas,greenness,and park size)and 2 neighborhood environmental factors(park density and park proximity).Conclusion:It can be concluded that paths/trails,lighting,and incivilities are 3 key physical environmental attributes of park-based PA.Given the inconsistent findings on park and neighborhood environmental factors,more robust designs such as prospective investigation are required.展开更多
Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In ...Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.展开更多
This article proposes a new algorithm of quaternion and dual quaternion in matrix form. It applies quaternion in special cases of rotated plane, transforming the sine and cosine of the rotation angle into matrix form,...This article proposes a new algorithm of quaternion and dual quaternion in matrix form. It applies quaternion in special cases of rotated plane, transforming the sine and cosine of the rotation angle into matrix form, then exporting flat quaternions base in two matrix form. It establishes serial 6R manipulator kinematic equations in the form of quaternion matrix. Then five variables are eliminated through linear elimination and application of lexicographic Groebner base. Thus, upper bound of the degree of the equation is determined, which is 16. In this way, a 16-degree equation with single variable is obtained without any extraneous root. This is the first time that quaternion matrix modeling has been used in 6R robot inverse kinematics analysis.展开更多
Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as dev...Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process.展开更多
The purpose of initial orbit determination,especially in the case of angles-only data for observation,is to obtain an initial estimate that is close enough to the true orbit to enable subsequent precision orbit determ...The purpose of initial orbit determination,especially in the case of angles-only data for observation,is to obtain an initial estimate that is close enough to the true orbit to enable subsequent precision orbit determination processing to be successful.However,the classical angles-only initial orbit determination methods cannot deal with the observation data whose Earth-central angle is larger than 360°.In this paper,an improved double r-iteration initial orbit determination method to deal with the above case is presented to monitor geosynchronous Earth orbit objects for a spacebased surveillance system.Simulation results indicate that the improved double r-iteration method is feasible,and the accuracy of the obtained initial orbit meets the requirements of re-acquiring the object.展开更多
基金primarily supported by the National 973 Fundamental Research Program of China(Grant No.2013CB430103)the Department of Transportation Federal Aviation Administration(Grant No.NA17RJ1227)through the National Oceanic and Atmospheric Administration+1 种基金supported by the National Science Foundation of China(Grant No.41405100)the Fundamental Research Funds for the Central Universities(Grant No.20620140343)
文摘The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thresholds in terms of the percentiles of overall precipitation instead of fixed threshold values. The impact of intensity forecast bias on the calculated threat score is reduced. The method is tested with the forecasts of a tropical storm that re-intensified after making landfall and caused heavy flooding. The forecasts are produced with and without radar data assimilation. The forecast with assimilation of both radial velocity and reflectivity produce precipitation patterns that better match observations but have large positive intensity bias. When using fixed thresholds, the neighborhood threat scores fail to yield high scores for forecasts that have good pattern match with observations, due to large intensity bias. In contrast, the percentile-based neighborhood method yields the highest score for the forecast with the best pattern match and the smallest position error. The percentile-based method also yields scores that are more consistent with object-based verifications, which are less sensitive to intensity bias, demonstrating the potential value of percentile-based verification.
基金supported by the Germany/Hong Kong Joint Research Scheme 2015/16 under Hong Kong SAR Governments’ RGC Grant (No.G-HKBU202/15)the Faculty Research Grant,Hong Kong Baptist University, Hong Kong (No.FRG2/13-14/065)
文摘Background:With an increase in the evidence for the associations between park-based physical activity(PA)and physical environments(especially park and neighborhood environments),researchers face an important challenge in interpreting and summarizing the evidence to develop environ?mental change interventions.An updated review is needed to better inform policymaking and environmental interventions.The current study aimed to systematically review the research on the associations of park-based PA with park and neighborhood environmental characteristics.Methods:We targeted English peer-reviewed articles from 5 electronic databases using keywords related to park-based PA,park environments,and neighborhood environments.Of the 4071 identified papers,25 studies published between 2008 and 2016 met all the eligibility criteria and were included in this review.Results:The characteristics of physical environment that received consistent support included paths/trails,lighting,and incivilities(e.g.,broken glasses and litter).Mixed findings were revealed for 6 park environmental factors(unspecified active facilities,playgrounds and skating areas,fit?ness stations,picnic areas,greenness,and park size)and 2 neighborhood environmental factors(park density and park proximity).Conclusion:It can be concluded that paths/trails,lighting,and incivilities are 3 key physical environmental attributes of park-based PA.Given the inconsistent findings on park and neighborhood environmental factors,more robust designs such as prospective investigation are required.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275366,50875190,51305311)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134219110002)
文摘Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.
文摘This article proposes a new algorithm of quaternion and dual quaternion in matrix form. It applies quaternion in special cases of rotated plane, transforming the sine and cosine of the rotation angle into matrix form, then exporting flat quaternions base in two matrix form. It establishes serial 6R manipulator kinematic equations in the form of quaternion matrix. Then five variables are eliminated through linear elimination and application of lexicographic Groebner base. Thus, upper bound of the degree of the equation is determined, which is 16. In this way, a 16-degree equation with single variable is obtained without any extraneous root. This is the first time that quaternion matrix modeling has been used in 6R robot inverse kinematics analysis.
文摘Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process.
文摘The purpose of initial orbit determination,especially in the case of angles-only data for observation,is to obtain an initial estimate that is close enough to the true orbit to enable subsequent precision orbit determination processing to be successful.However,the classical angles-only initial orbit determination methods cannot deal with the observation data whose Earth-central angle is larger than 360°.In this paper,an improved double r-iteration initial orbit determination method to deal with the above case is presented to monitor geosynchronous Earth orbit objects for a spacebased surveillance system.Simulation results indicate that the improved double r-iteration method is feasible,and the accuracy of the obtained initial orbit meets the requirements of re-acquiring the object.