To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 13...To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 130 KN was developed.In the conducted tests,the amount of deformation was 200-2000 mm,the breaking force reached 350 KN,and a high constant-resistance pre-stress was maintained during the deformation process.A stress compensation theory of phosphate rock excavation based on NPR bolts is proposed together with a balance system for bolt compensation of the time-space effect and high NPR pre-stress.Traditional split-set rock bolts are unable to maintain the stability of roadway roofs and pillars.To verify the support effect of the proposed bolt,field tests were conducted using both the proposed NPR bolts and split-set rock bolts as support systems on the same mining face.In addition,the stress compensation mechanism of roadway mining was simulated using the particle flow code in three dimensions(PFC^(3D))-fast Lagrangian analysis of continua(FLAC^(3D))particle-flow coupling numerical model.On-site monitoring and numerical simulations showed that the NPR excavation compensation support scheme effectively improves the stress state of the bolts and reduces the deformation of the surrounding rock.Compared to the original support scheme,the final deformation of the surrounding rock was reduced by approximately 70%.These results significantly contribute to domestic and foreign research on phosphate-rock NPR compensation support technology,theoretical systems,and engineering practices,and further promote technological innovation in the phosphate rock mining industry.展开更多
The Gouméré region is located in the North-East of Côte d’Ivoire and is located in the South-West of the Bui furrow. In order to highlight the geology of the area studied, 14 samples were taken for stu...The Gouméré region is located in the North-East of Côte d’Ivoire and is located in the South-West of the Bui furrow. In order to highlight the geology of the area studied, 14 samples were taken for studies using petrographic, geochemical and metallogenic methods. The study of macroscopic and microscopic petrography made it possible to highlight two major lithological units: 1) a volcano-plutonic unit, formed of gabbros, basalt, volcaniclastics and rhyodacite;2) a sedimentary unit (microconglomerate). From a geochemical point of view, the results obtained indicate that the plutonites are gabbro and gabbro diorite while the volcanics have compositions of basaltic andesites, rhyolite and dacites. The sediments have a litharenitic to sublitharenitic character. The metallogenic study made it possible to highlight hydrothermal alterations and metalliferous paragenesis on the formations studied. Hydrothermal alteration is characterized by the presence of carbonation, silicification, sericitization, sulfidation and to a lesser degree chloritization. Metalliferous paragenesis consists of pyrite, chalcopyrite, hematite and magnetite.展开更多
Climate change is an alarming global challenge, particularly affecting the least developed countries (LDCs) including Liberia. These countries, located in regions prone to unpredictable temperature and precipitation c...Climate change is an alarming global challenge, particularly affecting the least developed countries (LDCs) including Liberia. These countries, located in regions prone to unpredictable temperature and precipitation changes, are facing significant challenges, particularly in climate-sensitive sectors such as mining and agriculture. LDCs need more resilience to adverse climate shocks but have limited capacity for adaptation compared to other developed and developing nations. This paper examines Liberia’s susceptibility to climate change as a least developed country, focusing on its exposure, sensitivity, and adaptive capacity. It provides an overview of LDCs and outlines the global distribution of carbon dioxide emissions. The paper also evaluates specific challenges that amplify Liberia’s vulnerability and constrain sustainable adaptation, providing insight into climate change’s existing and potential effects. The paper emphasizes the urgency of addressing climate impacts on Liberia and calls for concerted local and international efforts for effective and sustainable mitigation efforts. It provides recommendations for policy decisions and calls for further research on climate change mitigation and adaptation.展开更多
基金funding support from the National Natural Science Foundation of China(NSFC)(Grant Nos.41941018 and 52304111)the Program of China Scholarship Council(Grant No.202206430007).
文摘To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 130 KN was developed.In the conducted tests,the amount of deformation was 200-2000 mm,the breaking force reached 350 KN,and a high constant-resistance pre-stress was maintained during the deformation process.A stress compensation theory of phosphate rock excavation based on NPR bolts is proposed together with a balance system for bolt compensation of the time-space effect and high NPR pre-stress.Traditional split-set rock bolts are unable to maintain the stability of roadway roofs and pillars.To verify the support effect of the proposed bolt,field tests were conducted using both the proposed NPR bolts and split-set rock bolts as support systems on the same mining face.In addition,the stress compensation mechanism of roadway mining was simulated using the particle flow code in three dimensions(PFC^(3D))-fast Lagrangian analysis of continua(FLAC^(3D))particle-flow coupling numerical model.On-site monitoring and numerical simulations showed that the NPR excavation compensation support scheme effectively improves the stress state of the bolts and reduces the deformation of the surrounding rock.Compared to the original support scheme,the final deformation of the surrounding rock was reduced by approximately 70%.These results significantly contribute to domestic and foreign research on phosphate-rock NPR compensation support technology,theoretical systems,and engineering practices,and further promote technological innovation in the phosphate rock mining industry.
文摘The Gouméré region is located in the North-East of Côte d’Ivoire and is located in the South-West of the Bui furrow. In order to highlight the geology of the area studied, 14 samples were taken for studies using petrographic, geochemical and metallogenic methods. The study of macroscopic and microscopic petrography made it possible to highlight two major lithological units: 1) a volcano-plutonic unit, formed of gabbros, basalt, volcaniclastics and rhyodacite;2) a sedimentary unit (microconglomerate). From a geochemical point of view, the results obtained indicate that the plutonites are gabbro and gabbro diorite while the volcanics have compositions of basaltic andesites, rhyolite and dacites. The sediments have a litharenitic to sublitharenitic character. The metallogenic study made it possible to highlight hydrothermal alterations and metalliferous paragenesis on the formations studied. Hydrothermal alteration is characterized by the presence of carbonation, silicification, sericitization, sulfidation and to a lesser degree chloritization. Metalliferous paragenesis consists of pyrite, chalcopyrite, hematite and magnetite.
文摘Climate change is an alarming global challenge, particularly affecting the least developed countries (LDCs) including Liberia. These countries, located in regions prone to unpredictable temperature and precipitation changes, are facing significant challenges, particularly in climate-sensitive sectors such as mining and agriculture. LDCs need more resilience to adverse climate shocks but have limited capacity for adaptation compared to other developed and developing nations. This paper examines Liberia’s susceptibility to climate change as a least developed country, focusing on its exposure, sensitivity, and adaptive capacity. It provides an overview of LDCs and outlines the global distribution of carbon dioxide emissions. The paper also evaluates specific challenges that amplify Liberia’s vulnerability and constrain sustainable adaptation, providing insight into climate change’s existing and potential effects. The paper emphasizes the urgency of addressing climate impacts on Liberia and calls for concerted local and international efforts for effective and sustainable mitigation efforts. It provides recommendations for policy decisions and calls for further research on climate change mitigation and adaptation.