期刊文献+
共找到7,638篇文章
< 1 2 250 >
每页显示 20 50 100
Correlation of periodontal inflamed surface area with glycated hemoglobin,interleukin-6 and lipoprotein(a)in type 2 diabetes with retinopathy 被引量:2
1
作者 Nusreen Jamal Thazhe Poyil Rosamma Joseph Vadakkekuttical Chandni Radhakrishnan 《World Journal of Diabetes》 SCIE 2024年第4期686-696,共11页
BACKGROUND The two-way relationship between periodontitis and type 2 diabetes mellitus(T2DM)is well established.Prolonged hyperglycemia contributes to increased periodontal destruction and severe periodontitis,accentu... BACKGROUND The two-way relationship between periodontitis and type 2 diabetes mellitus(T2DM)is well established.Prolonged hyperglycemia contributes to increased periodontal destruction and severe periodontitis,accentuating diabetic complications.An inflammatory link exists between diabetic retinopathy(DR)and periodontitis,but the studies regarding this association and the role of lipoprotein(a)[Lp(a)]and interleukin-6(IL-6)in these conditions are scarce in the literature.AIM To determine the correlation of periodontal inflamed surface area(PISA)with glycated Hb(HbA1c),serum IL-6 and Lp(a)in T2DM subjects with retinopathy.METHODS This cross-sectional study comprised 40 T2DM subjects with DR and 40 T2DM subjects without DR.All subjects were assessed for periodontal parameters[bleeding on probing(BOP),probing pocket depth,clinical attachment loss(CAL),oral hygiene index-simplified,plaque index(PI)and PISA],and systemic parameters[HbA1c,fasting plasma glucose and postprandial plasma glucose,fasting lipid profile,serum IL-6 and serum Lp(a)].RESULTS The proportion of periodontitis in T2DM with and without DR was 47.5%and 27.5%respectively.Severity of periodontitis,CAL,PISA,IL-6 and Lp(a)were higher in T2DM with DR group compared to T2DM without DR group.Significant difference was observed in the mean percentage of sites with BOP between T2DM with DR(69%)and T2DM without DR(41%),but there was no significant difference in PI(P>0.05).HbA1c was positively correlated with CAL(r=0.351,P=0.001),and PISA(r=0.393,P≤0.001)in study subjects.A positive correlation was found between PISA and IL-6(r=0.651,P<0.0001);PISA and Lp(a)(r=0.59,P<0.001);CAL and IL-6(r=0.527,P<0.0001)and CAL and Lp(a)(r=0.631,P<0.001)among study subjects.CONCLUSION Despite both groups having poor glycemic control and comparable plaque scores,the periodontal parameters were higher in DR as compared to T2DM without DR.Since a bidirectional link exists between periodontitis and DM,the presence of DR may have contributed to the severity of periodontal destruction and periodontitis may have influenced the progression of DR. 展开更多
关键词 Type 2 diabetes mellitus PErIODONTITIS Periodontal inflamed surface Area Glycated Hb Diabetic retinopathy
下载PDF
Surface-modified Ag@Ru-P25 for photocatalytic CO_(2) conversion with high selectivity over CH_(4) formation at the solid–gas interface 被引量:1
2
作者 Chaitanya B.Hiragond Sohag Biswas +8 位作者 Niket SPowar Junho Lee Eunhee Gong Hwapyong Kim Hong Soo Kim Jin-Woo Jung Chang-Hee Cho Bryan M.Wong Su-Il In 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期182-196,共15页
Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar f... Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar fuels.A surface-modified Ag@Ru-P25 photocatalyst with H_(2)O_(2) treatment was designed in this study to convert CO_(2) and H_(2)O vapor into highly selective CH4.Ru doping followed by Ag nanoparticles(NPs)cocatalyst deposition on P25(TiO_(2))enhances visible light absorption and charge separation,whereas H_(2)O_(2) treatment modifies the surface of the photocatalyst with hydroxyl(–OH)groups and promotes CO_(2) adsorption.High-resonance transmission electron microscopy,X-ray photoelectron spectroscopy,X-ray absorption near-edge structure,and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst,while thermogravimetric analysis,CO_(2) adsorption isotherm,and temperature programmed desorption study were performed to examine the significance of H_(2)O_(2) treatment in increasing CO_(2) reduction activity.The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO_(2) reduction activity into CO,CH4,and C2H6 with a~95%selectivity of CH4,where the activity was~135 times higher than that of pristine TiO_(2)(P25).For the first time,this work explored the effect of H_(2)O_(2) treatment on the photocatalyst that dramatically increases CO_(2) reduction activity. 展开更多
关键词 gas-phase CO_(2) reduction H_(2)O_(2) treatment plasmonic nanoparticles solar fuel photocatalyst surface modification
下载PDF
Neutral and metallic vs.charged and semiconducting surface layer in acceptor doped CeO_(2)
3
作者 Ilan Riess 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期795-802,共8页
The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface def... The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface defects concentration in acceptor doped ceria with two different dopant types and operated under different oxygen pressures.Recently published experimental data for highly reduced Sm0.2Ce0.8O1.9-x(SDC)containing a fixed valence dopant Sm3+are very different from those published for Pr0.1Ce0.9O_(2)-x(PCO) with the variable valence dopant Pr4+/Pr3+being reduced under milder conditions.The theoretical analysis of these experimental results fits very well the experimental results of SDC and PCO.It leads to the following predictions:the highly reduced surface of SDC is metallic and neutral,the metallic surface electron density of state is gs=0.9×10^(38)J-1·m^(-2)(1.4×1015eV^(-1)·cm^(-2)),the electron effective mass is meff,s=3.3me,and the phase diagram of the reduced surface has theα(fcc)structure as in the bulk.In PCO a double layer is predicted to be formed between the surface and the bulk with the surface being negatively charged and semiconducting.The surface of PCO maintains high Pr^(3+) defect concentration as well as relative high oxygen vacancy concentration at oxygen pressures higher than in the bulk.The reasons for the difference between a metallic and semiconducting surface layer of acceptor doped CeO_(2) are reviewed,as well as the key theoretical considerations applied in coping with this problem.For that we make use of the experimental data and theoretical analysis available for acceptor doped ceria. 展开更多
关键词 CeO_(2) surface defects metallic surface oxide reduction Sm doped CeO_(2) Pr doped CeO_(2)
下载PDF
MXenes: Versatile 2D materials with tailored surface chemistry and diverse applications
4
作者 Sunil Kumar Nitu Kumari Yongho Seo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期253-293,I0008,共42页
MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical str... MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation. 展开更多
关键词 MXenes 2D materials surface chemistry MXenes structure SYNTHESIS APPLICATIONS
下载PDF
Spatial Variation in CO_(2) Concentration Improves the Simulated Surface Air Temperature Increase in the Northern Hemisphere
5
作者 Jing PENG Li DAN Xiba TANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1614-1628,1676-1685,共25页
The increasing concentration of atmospheric CO_(2) since the Industrial Revolution has affected surface air temperature.However,the impact of the spatial distribution of atmospheric CO_(2) concentration on surface air... The increasing concentration of atmospheric CO_(2) since the Industrial Revolution has affected surface air temperature.However,the impact of the spatial distribution of atmospheric CO_(2) concentration on surface air temperature biases remains highly unclear.By incorporating the spatial distribution of satellite-derived atmospheric CO_(2) concentration in the Beijing Normal University Earth System Model,this study investigated the increase in surface air temperature since the Industrial Revolution in the Northern Hemisphere(NH) under historical conditions from 1976-2005.In comparison with the increase in surface temperature simulated using a uniform distribution of CO_(2),simulation with a nonuniform distribution of CO_(2)produced better agreement with the Climatic Research Unit(CRU) data in the NH under the historical condition relative to the baseline over the period 1901-30.Hemispheric June-July-August(JJA) surface air temperature increased by 1.28℃ ±0.29℃ in simulations with a uniform distribution of CO_(2),by 1.00℃±0.24℃ in simulations with a non-uniform distribution of CO_(2),and by 0.24℃ in the CRU data.The decrease in downward shortwave radiation in the non-uniform CO_(2) simulation was primarily attributable to reduced warming in Eurasia,combined with feedbacks resulting from increased leaf area index(LAI) and latent heat fluxes.These effects were more pronounced in the non-uniform CO_(2)simulation compared to the uniform CO_(2) simulation.Results indicate that consideration of the spatial distribution of CO_(2)concentration can reduce the overestimated increase in surface air temperature simulated by Earth system models. 展开更多
关键词 spatial variations of CO_(2) surface air temperature Earth system model land surface albedo leaf area index
下载PDF
Effects of surface chlorine atoms on charge distribution and reaction barriers for photocatalytic CO_(2)reduction
6
作者 Wendong Zhang Wenjun Ma +6 位作者 Yuerui Ma Peng Chen Qingqing Ye Yi Wang Zhongwei Jiang Yingqing Ou Fan Dong 《Nano Materials Science》 EI CAS CSCD 2024年第2期235-243,共9页
Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are st... Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst. 展开更多
关键词 surface chlorine atoms Charge distribution reaction barriers Photocatalytic CO_(2)reduction Bi_(2)WO_(6)
下载PDF
Facile Surface Engineering of NiCo_(2)O_(4) to Boost Propane Oxidation Activity
7
作者 Yang Jialei Wang Fengyi +7 位作者 Lei Yang Zhang Mingchao Sun Shiqiang Xu Wenfan Ke Jiaxiang Wu Haojie Li Xingyun Qi Jian 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期19-26,共8页
Spinel oxide(NiCo_(2)O_(4))has demonstrated great potential to replace noble metal catalysts for the oxidation reaction of air pollutants.To further boost the oxidation ability of such catalysts,in this study,a facile... Spinel oxide(NiCo_(2)O_(4))has demonstrated great potential to replace noble metal catalysts for the oxidation reaction of air pollutants.To further boost the oxidation ability of such catalysts,in this study,a facile surface-engineering strategy wherein NiCo_(2)O_(4) was treated with different alkali solvents was developed.The obtained catalyst(NiCo_(2)O_(4)-OH)showed a higher surface alkalinity and more surface defects compared to the pristine spinel oxide,including enhanced structural distortion as well as promoted oxygen vacancies.The propane oxidation ability of NiCo_(2)O_(4)-OH was greatly enhanced,with a propane conversion rate that was approximately 6.4 times higher than that of pristine NiCo_(2)O_(4) at a reaction temperature 193℃.This work sets a valuable paradigm for the surface modulation of spinel oxide via alkali treatment to ensure a high-performance oxidation catalyst. 展开更多
关键词 NiCo_(2)O_(4) surface defects alkali treatment propane oxidation
下载PDF
Influence of stearic acid surface modification on flowability and agglomeration of battery grade Li_(2)CO_(3)powder
8
作者 Ming Zhou 《Particuology》 SCIE EI CAS CSCD 2024年第9期263-277,共15页
This work investigates the flow and agglomeration behaviors of battery grade Li_(2)CO_(3)powder and the influence of stearic acid surface modification.The degree of agglomeration is directly related to the uniformity ... This work investigates the flow and agglomeration behaviors of battery grade Li_(2)CO_(3)powder and the influence of stearic acid surface modification.The degree of agglomeration is directly related to the uniformity of Li_(2)CO_(3)and its powder mixtures.According to the Chinese National Nonferrous Metal Industry Standard,battery grade Li_(2)CO_(3)powder has D50 equal to 3–8μm which belongs to a micron-sized superfine powder.Therefore,with the extension of storage time,the serious agglomeration phenomenon occurs due to the large specific surface area and rough and irregular powder particles.The Hausner ratio(HR)of the unmodified sample increases from 1.14 to 1.41,and the corresponding flowability is classified as good to poor.Instead,among samples with doping stearic acid,the optimum amount of it is 0.10 wt%which exhibits an extremely stable HR value from 1.14 to 1.16.Meanwhile,after 156 days,the repose angle(AR)obtained for samples without surface modification and using 0.10 wt%stearic acid are calculated to be 49°and 28°,respectively.Based on the values of HR and AR,the flowability of the unmodified sample is poor while the sample modified with 0.10 wt%of stearic acid still maintain excellent powder flow property.Moreover,The LiMn_(2)O_(4)cathode material synthesized from modified Li_(2)CO_(3)powder with a stearic acid content of 0.10 wt%exhibits good crystallinity and comparable electrochemical performance to that prepared by commercial Li_(2)CO_(3).These results indicate that stearic acid has the potential to be an ideal modifier for battery grade Li_(2)CO_(3)powder that needs to be kept for a long time. 展开更多
关键词 Battery grade Li_(2)CO_(3)powder FLOWABILITY surface modification Stearic acid
原文传递
Triple the steady-state reaction rate by decorating the In_(2)O_(3)surface with SiO_(x)for CO_(2)hydrogenation
9
作者 Hao Wang Chun Yang +8 位作者 Xiaoyan Yu Mingrui Wang Runze Yang Xiaowa Nie Ben Hang Yin Alex C.K.Yip Chunshan Song Guanghui Zhang Xinwen Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期96-105,I0003,共11页
Indium oxide(In_(2)O_(3)),as a promising candidate for CO_(2)hydrogenation to C_(1) products,often suffers from sintering and activity decline,closely related to the undesirable structural evolution under reaction con... Indium oxide(In_(2)O_(3)),as a promising candidate for CO_(2)hydrogenation to C_(1) products,often suffers from sintering and activity decline,closely related to the undesirable structural evolution under reaction conditions.Based on the comprehension of the dynamic evolution,this study presents an efficient strategy to alleviate the agglomeration of In_(2)O_(3)nanoparticles by the surface decoration with highly dispersed silica species(SiO_(x)).Various structural characterizations combined with density functional theory calculations demonstrated that the sintering resulted from the over-reduction,while the enhanced stability originated from the anchoring effect of highly stable In-OSi bonds,which hinders the substantial formation of metallic In(In^(0))and the subsequent agglomeration.0.6Si/In_(2)O_(3)exhibited CO_(2)conversion rate of10.0 mmol g^(-1)h^(-1)at steady state vs.3.5 mmol g^(-1)h^(-1)on In_(2)O_(3)in CO_(2)hydrogenation.Enhanced steady-state activity was also achieved on Pd-modified catalysts.Compared to the traditional Pd/In_(2)O_(3)catalyst,the methanol production rate of Pd catalyst supported on 0.6Si/In_(2)O_(3)was enhanced by 23%,showing the potential of In_(2)O_(3)modified by SiO_(x)in serving as a platform material.This work provides a promising method to design new In_(2)O_(3)-based catalysts with improved activity and stability in CO_(2)hydrogenation. 展开更多
关键词 CO_(2)hydrogenation In_(2)O_(3)sintering Dynamic structural evolution surface SiO_(x)modification DFT simulations
下载PDF
Modification of Nano-α-Al2O3 and Its Influence on the Surface Properties of Waterborne Polyurethane Resin Composite Passivation Films
10
作者 Jiankang Fu Changshuai Ma +2 位作者 Yameng Zhu Jing Yuan Qianfeng Zhang 《Journal of Materials Science and Chemical Engineering》 2024年第5期29-48,共20页
Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub&... Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>. 展开更多
关键词 Micro-Nano α-Al2O3 Waterborne Polyurethane resin Particle Size surface Hardness Corrosion resistance
下载PDF
Fiber Bundle Topology Optimization for Surface Flows
11
作者 Yongbo Deng Weihong Zhang +2 位作者 Jihong Zhu Yingjie Xu Jan G Korvink 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期236-264,共29页
This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern ... This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern can be optimized,where the 2-manifold is implicitly defined on another fixed 2-manifold named as the base manifold.The fiber bundle topology optimization approach is developed based on the description of the topological structure of the surface flow by using the differential geometry concept of the fiber bundle.The material distribution method is used to achieve the evolution of the pattern of the surface flow.The evolution of the implicit 2-manifold is realized via a homeomorphous map.The design variable of the pattern of the surface flow and that of the implicit 2-manifold are regularized by two sequentially implemented surface-PDE filters.The two surface-PDE filters are coupled,because they are defined on the implicit 2-manifold and base manifold,respectively.The surface Navier-Stokes equations,defined on the implicit 2-manifold,are used to describe the surface flow.The fiber bundle topology optimization problem is analyzed using the continuous adjoint method implemented on the first-order Sobolev space.Several numerical examples have been provided to demonstrate this approach,where the combination of the viscous dissipation and pressure drop is used as the design objective. 展开更多
关键词 Fiber bundle Topology optimization 2-MANIFOLD surface flow Material distribution method Porous medium model
下载PDF
Impacts of Ice-Ocean Stress on the Subpolar Southern Ocean:Role of the Ocean Surface Current
12
作者 Yang WU Zhaomin WANG +1 位作者 Chengyan LIU Liangjun YAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期293-309,共17页
The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting t... The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting two simulations that include and exclude the OSC in the calculation of the ice-ocean stress(IOS), using an eddy-permitting coupled ocean-sea ice global model. By comparing the results of these two experiments, significant increases of 5%, 27%, and 24%, were found in the subpolar Southern Ocean when excluding the OSC in the IOS calculation for the ocean surface stress,upwelling, and downwelling, respectively. Excluding the OSC in the IOS calculation also visibly strengthens the total mechanical energy input to the OSC by about 16%, and increases the eddy kinetic energy and mean kinetic energy by about38% and 12%, respectively. Moreover, the response of the meridional overturning circulation in the Southern Ocean yields respective increases of about 16% and 15% for the upper and lower branches;and the subpolar gyres are also found to considerably intensify, by about 12%, 11%, and 11% in the Weddell Gyre, the Ross Gyre, and the Australian-Antarctic Gyre, respectively. The strengthened ocean circulations and Ekman pumping result in a warmer sea surface temperature(SST), and hence an incremental surface heat loss. The increased sea ice drift and warm SST lead to an expansion of the sea ice area and a reduction of sea ice volume. These results emphasize the importance of OSCs in the air-sea-ice interactions on the global ocean circulations and the mass balance of Antarctic ice shelves, and this component may become more significant as the rapid change of Antarctic sea ice. 展开更多
关键词 subpolar Southern Ocean Antarctic sea ice ice-ocean stress air-sea-ice-ocean interaction ocean surface current MITgcm-ECCO2
下载PDF
Surface Patterning of Metal Zinc Electrode with an In‑Region Zincophilic Interface for High‑Rate and Long‑Cycle‑Life Zinc Metal Anode
13
作者 Tian Wang Qiao Xi +8 位作者 Kai Yao Yuhang Liu Hao Fu Venkata Siva Kavarthapu Jun Kyu Lee Shaocong Tang Dina Fattakhova‑Rohlfing Wei Ai Jae Su Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期192-209,共18页
The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially im... The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs. 展开更多
关键词 Zn metal anode surface patterning Directional Zn deposition Aqueous Zn-I_(2)batteries
下载PDF
Covalency competition induced selective bond breakage and surface reconstruction in manganese cobaltite towards enhanced electrochemical charge storage
14
作者 Peng Gao Pei Tang +7 位作者 Ying Mo Peitao Xiao Wang Zhou Shi Chen Hongliang Dong Ziwei Li Chaohe Xu Jilei Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期909-918,共10页
Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn ... Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties. 展开更多
关键词 Manganese cobaltite Tetrahedrally-coordinated Co^(2+)leaching Selective bond breakage surface reconstruction Charge storage mechanisms
下载PDF
A bi-functional strategy involving surface coating and subsurface gradient co-doping for enhanced cycle stability of LiCoO_(2) at 4.6 V 被引量:2
15
作者 Yun He Xiaoliang Ding +7 位作者 Tao Cheng Hongyu Cheng Meng Liu Zhijie Feng Yijia Huang Menghan Ge Yingchun Lyu Bingkun Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期553-560,I0014,共9页
Layered LiCoO_(2)(LCO)acts as a dominant cathode material for lithium-ion batteries(LIBs)in 3C products because of its high compacted density and volumetric energy density.Although improving the high cutoff voltage is... Layered LiCoO_(2)(LCO)acts as a dominant cathode material for lithium-ion batteries(LIBs)in 3C products because of its high compacted density and volumetric energy density.Although improving the high cutoff voltage is an effective strategy to increase its capacity,such behavior would trigger rapid capacity decay due to the surface or/and structure degradation.Herein,we propose a bi-functional surface strategy involving constructing a robust spinel-like phase coating layer with great integrity and compatibility to LiCoO_(2) and modulating crystal lattice by anion and cation gradient co-doping at the subsurface.As a result,the modified LiCoO_(2)(AFM-LCO)shows a capacity retention of 80.9%after 500 cycles between 3.0and 4.6 V.The Al,F,Mg enriched spinel-like phase coating layer serves as a robust physical barrier to effectively inhibit the undesired side reactions between the electrolyte and the cathode.Meanwhile,the Al,F,Mg gradient co-doping significantly enhances the surficial structure stability,suppresses Co dissolution and oxygen release,providing a stable path for Li-ions mobility all through the long-term cycles.Thus,the surface bi-functional strategy is an effective method to synergistically improve the electrochemical performances of LCO at a high cut-off voltage of 4.6 V. 展开更多
关键词 Lithium-ion batteries 4.6 V-LiCoO_(2) surface modification Gradient co-doping Interfacial stability
下载PDF
Increasing Surface UV Radiation in the Tropics and Northern Mid-Latitudes due to Ozone Depletion after 2010 被引量:1
16
作者 Fei XIE Yan XIA +1 位作者 Wuhu FENG Yingli NIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1833-1843,共11页
Excessive exposure to ultraviolet(UV)radiation harms humans and ecosystems.The level of surface UV radiation had increased due to declines in stratospheric ozone in the late 1970s in response to emissions of chloroflu... Excessive exposure to ultraviolet(UV)radiation harms humans and ecosystems.The level of surface UV radiation had increased due to declines in stratospheric ozone in the late 1970s in response to emissions of chlorofluorocarbons.Following the implementation of the Montreal Protocol,the stratospheric loading of chlorine/bromine peaked in the late 1990s and then decreased;subsequently,stratospheric ozone and surface UV radiation would be expected to recover and decrease,respectively.Here,we show,based on multiple data sources,that the May–September surface UV radiation in the tropics and Northern Hemisphere mid-latitudes has undergone a statistically significant increasing trend[about 60.0 J m^(–2)(10 yr)^(–1)]at the 2σlevel for the period 2010–20,due to the onset of total column ozone(TCO)depletion[about−3.5 DU(10 yr)^(–1)].Further analysis shows that the declines in stratospheric ozone after 2010 could be related to an increase in stratospheric nitrogen oxides due to increasing emissions of the source gas nitrous oxide(N_(2)O). 展开更多
关键词 surface UV radiation stratospheric ozone stratospheric chemistry N_(2)O
下载PDF
Optimized CeO_(2) Nanowires with Rich Surface Oxygen Vacancies Enable Fast Li-Ion Conduction in Composite Polymer Electrolytes 被引量:1
17
作者 Lu Gao Nan Wu +7 位作者 Nanping Deng Zhenchao Li Jianxin Li Yong Che Bowen Cheng Weimin Kang Ruiping Liu Yutao Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期218-223,共6页
Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)t... Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities. 展开更多
关键词 composite polymer electrolytes Gd-doped CeO_(2)nanowires Li-ion conduction oxygen vacancies surface interaction
下载PDF
Surface hydrophobic modification of MXene to promote the electrochemical conversion of N_(2) to NH_(3) 被引量:1
18
作者 Xu Wang Rui Zhang +6 位作者 Chaoqun Ma Wei Yan Yanjiao Wei Jian Tian Min Ma Qing Li Minhua Shao 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期439-449,I0011,共12页
Hydrophobic treatment of the catalyst surfaces can suppress the competitive hydrogen evolution reaction(HER) during the nitrogen reduction reaction(NRR).In this work,the surface of Ti_(3)C_(2)Ti_(x) MXene is modified ... Hydrophobic treatment of the catalyst surfaces can suppress the competitive hydrogen evolution reaction(HER) during the nitrogen reduction reaction(NRR).In this work,the surface of Ti_(3)C_(2)Ti_(x) MXene is modified by cetyltrimethylammonium bromide(CTAB) and trimethoxy(3,3,4,4,5,5,6,6,7,7,8,8,8-trideca fluorooctyl) silane(FOTS) to increase the hydrophobicity of MXenes.The ammonia(NH_(3)) production rate and faradaic efficiency(FE) are improved from 37.62 to 54.01 μg h^(-1)mg_(cat)^(-1).and 5.5% to 18.1% at-0.7 V vs.RHE,respectively after surface modification.^(15)N isotopic labeling experiment confirms that nitrogen in produced ammonia originates from N_(2) in the electrolyte.The excellent NRR activity of surface hydrophobic MXenes is mainly due to surfactant molecules,which inhibit the entry of water molecules and the competitive HER,which have been verified by in situ FT-IR,DFT and molecular dynamics calculations.This strategy provides an ingenious method to design more active NRR electrocatalysts. 展开更多
关键词 ELECTrOCATALYSIS Nitrogen reduction reaction surface hydrophobic modification MXene Ti_(3)C_(2)Ti_(x)
下载PDF
Etching characteristics and surface modification of InGaSnO thin films under Cl_(2)/Ar plasma
19
作者 Young-Hee JOO Jae-Won CHOI +3 位作者 Bo HOU Hyuck-In KWON Doo-Seung UM Chang-Il KIM 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第10期91-96,共6页
Indium gallium tin oxide(IGTO)thin films have the potential for high mobility and lowtemperature processing,which makes them suitable for applications such as display backplanes and high-voltage switching devices.Howe... Indium gallium tin oxide(IGTO)thin films have the potential for high mobility and lowtemperature processing,which makes them suitable for applications such as display backplanes and high-voltage switching devices.However,very few studies have investigated the plasmaetching characteristics of IGTO and changes in its properties after etching.In this study,the etching characteristics of IGTO were investigated using Cl_(2)/Ar plasma,and changes in surface properties were analyzed.Results showed that the etch rate increased with an increase in the proportion of Cl_(2),with the highest etch rate observed at 69 nm min^(-1)in pure Cl_(2)plasma with a gas flow rate of 100 sccm.Furthermore,increased radio-frequency power caused a rise in the etch rate,while a process pressure of 15 m Torr was optimal.The primary etching mechanism for IGTO thin films under Cl_(2)plasma was a chemical reaction,and an increased work function indicated the occurrence of defects on the surface.In addition,the etching process reduced the surface roughness of Cl_(2)-containing plasma,whereas the etching process in pure Ar plasma increased surface roughness.This study contributes to a better understanding of the plasmaetching characteristics of IGTO and changes in its properties after etching,providing valuable insights for IGTO-based applications. 展开更多
关键词 InGaSnO Cl2-based plasma etching mechanism surface modification plasma etching
下载PDF
Assimilation of Ocean Surface Wind Data by the HY-2B Satellite in GRAPES: Impacts on Analyses and Forecasts
20
作者 Jincheng WANG Xingwei JIANG +4 位作者 Xueshun SHEN Youguang ZHANG Xiaomin WAN Wei HAN Dan WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期44-61,共18页
The ocean surface wind(OSW)data retrieved from microwave scatterometers have high spatial accuracy and represent the only wind data assimilated by global numerical models on the ocean surface,thus playing an important... The ocean surface wind(OSW)data retrieved from microwave scatterometers have high spatial accuracy and represent the only wind data assimilated by global numerical models on the ocean surface,thus playing an important role in improving the forecast skills of global medium-range weather prediction models.To improve the forecast skills of the Global/Regional Assimilation and Prediction System Global Forecast System(GRAPES_GFS),the HY-2B OSW data is assimilated into the GRAPES_GFS four-dimensional variational assimilation(4DVAR)system.Then,the impacts of the HY-2B OSW data assimilation on the analyses and forecasts of GRAPES_GFS are analyzed based on one-month assimilation cycle experiments.The results show that after assimilating the HY-2B OSW data,the analysis errors of the wind fields in the lower-middle troposphere(1000-600 hPa)of the tropics and the southern hemisphere(SH)are significantly reduced by an average rate of about 5%.The impacts of the HY-2B OSW data assimilation on the analysis fields of wind,geopotential height,and temperature are not solely limited to the boundary layer but also extend throughout the entire troposphere after about two days of cycling assimilation.Furthermore,assimilating the HY-2B OSW data can significantly improve the forecast skill of wind,geopotential height,and temperature in the troposphere of the tropics and SH. 展开更多
关键词 HY-2B ocean surface wind 4DVAr GrAPES-GFS medium-range weather forecast
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部