In many cases, seismic appraisal of existing structures is carried out by the two step method and seismic strengthening of R.C. frame structures is solved just based on rough calculation or experience of designers, wh...In many cases, seismic appraisal of existing structures is carried out by the two step method and seismic strengthening of R.C. frame structures is solved just based on rough calculation or experience of designers, which may lead to either lack of safety or too conservative in design. According to some related criteria and experts experience, a computer program is developed specially for seismic appraisal and seismic strengthening of R.C. frames (not more than 10 storeys) in this paper. Because the progra...展开更多
Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated...Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance.展开更多
The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(...The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.展开更多
Cu^(+)-doped alkali borosilicate glasses with different Na_(2)O contents were prepared by the melting method,and the effects of different R values(R=Na_(2)O/B_(2)O_(3))on the structure,ion presence state and luminesce...Cu^(+)-doped alkali borosilicate glasses with different Na_(2)O contents were prepared by the melting method,and the effects of different R values(R=Na_(2)O/B_(2)O_(3))on the structure,ion presence state and luminescence properties of Cu^(+)-doped alkali borosilicate glasses were investigated.The analysis by FT-IR and Raman spectroscopy shows that,with the increase of R value of the glass,the[BO_(3)]in the structure of Cu^(+)-doped alkali borosilicate glass transforms into[BO_(4)]and the number of non-bridging oxygen in the glass network appears to be slightly increased.The absorption spectra and EPR analysis reveal that the Cu^(+)content in the glass gradually decreases and the Cu^(2+)content gradually increases as the R value of the glass increases.XPS and PL tests further indicate that the transformation of the octahedral coordination structure of Cu^(+)to the octahedral coordination structure of Cu^(2+)and the cubic coordination structure of Cu^(+)occurs in the glass as the R value of the glass increases.This transformation can effectively reduce the concentration quenching phenomenon of Cu^(+)and improve the fluorescence luminescence intensity of the glass samples.Meanwhile,the samples were found to have luminescence tunability as well as good thermal stability.展开更多
Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars wi...Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H_(2),which remains challenging.Here,the photo-catalytic activity for glucose decomposition to HCOOH,CO(C_(1) chemicals),and H_(2) on Cu/TiO_(2)was enhanced by nitrogen doping.Owing to nitrogen doping,atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO_(2).The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit,distinct from undoped Cu/TiO_(2).Therefore,the lifetime of charge carriers is prolonged,resulting in the pro-duction of C_(1) chemicals and H_(2) with productivities 1.7 and 2.1 folds that of Cu/TiO_(2).This work pro-vides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.展开更多
The microstructure of the 18R-type long period stacking ordered (LPSO) phase in Mg 97 Y 2 Zn 1 alloy was investigated by the first principles calculation. The arrangement rule of Zn and Y atoms in the LPSO structure...The microstructure of the 18R-type long period stacking ordered (LPSO) phase in Mg 97 Y 2 Zn 1 alloy was investigated by the first principles calculation. The arrangement rule of Zn and Y atoms in the LPSO structure is determined theoretically. The calculation results reveal that the additive atoms are firstly located in the fault layers at the two ends of the 18R-type LPSO structure, and then extend to fault layers in the interior, which is in good agreement with the experimental observations. This feature also implies the microstructural relationship between 18R and other LPSO structures. The cohesive energy and the formation heat indicate the dependence of the stability of 18R LPSO structure on contents of Y and Zn atoms. The calculated electronic structures reveal the underlying mechanism of microstructure and the stability of 18R LPSO structure.展开更多
Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their po...Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their possibly corresponding miRNAs in C. elegans. Methods Total 55 genetic loci required for the amphid structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 30 genes among the 55 genetic loci selected have their possible corresponding regulatory miRNA(s), and identified genes participate in the regulation of almost all aspects of amphid structure and function. In addition, our data suggest that both the amphid structure and the amphid functions might be regulated by a series of network signaling pathways. Moreover, the distribution of miRNAs along the 3' untranslated region (UTR) of these 30 genes exhibits different patterns. Conclusion We present the possible miRNA-mediated signaling pathways involved in the regulation of chemosensation and thermosensation by controlling the corresponding sensory neuron and interneuron functions. Our work will be useful for better understanding of the miRNA-mediated control of the chemotaxis and thermotaxis in C. elegans.展开更多
Traditionally governance structures are classified into "hierarchy or market" or "equity or non-equity." However,such classifications may not be effective in characterizing all governance structures of research an...Traditionally governance structures are classified into "hierarchy or market" or "equity or non-equity." However,such classifications may not be effective in characterizing all governance structures of research and development(R D) alliances.Therefore,the first objective of this study is to investigate why there exist different organizational governance structures in managing R D alliances;the second objective of this study is to give strategic advice in choosing appropriate forms with respect to various characteristics of R D alliances.Through the theoretical lens that integrate both transaction cost economics(TCE) and the resource-based view(RBV),a model that focuses on six major factors is developed for determining governance structure choices,namely,technological uncertainty,cultural difference,asset specificity,technology complementarity,appropriability of the individual firm's know-how,and trust.An R D alliance with higher technological uncertainty,larger cultural differences,and greater concerns for protecting an individual's know-how is more likely to adopt non-integrated alliances as the governing structure.An R D alliance with a higher degree of asset-specificity,greater technology complementarity and greater trust among partnering organizations is more likely to adopt integrated alliances as the governing structure;an R D alliance in the face of lower technological uncertainty will tend to adopt integrated alliances.The more aligned the choice of the governance structure with its determinants,the better the R D alliance will perform,and vice versa.展开更多
A porous coral-structured Si/C composite as an anode material was fabricated by coating Si nanoparticles with a carbon layer from polyvinyl alcohol(PVA), erosion of hydrofluoric(HF) acid, and secondary coating wit...A porous coral-structured Si/C composite as an anode material was fabricated by coating Si nanoparticles with a carbon layer from polyvinyl alcohol(PVA), erosion of hydrofluoric(HF) acid, and secondary coating with pitch. Three samples with different pitch contents of 30%, 40% and 50% were synthesized. The composition and morphology of the composites were characterized by X-ray diffractometry(XRD) and scanning electron microscopy(SEM), respectively, and the properties were tested by electrochemical measurements. The results indicated that the composites showed obviously enhanced electrochemical performance compared with that without secondary carbon coating. The second discharge capacity of the composite was 773 m A·h/g at a current density of 100 m A/g, and still retained 669 m A·h/g after 60 cycles with a small capacity fade of less than 0.23%/cycle, while the content of secondary carbon source of pitch was set at 40%. Therefore, the cycle stability of the composite could be excellently improved by regulating carbon content of secondary coating.展开更多
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result...In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.展开更多
The samples of the C-S-H series were synthesized by hydrothermal reaction of fumed silica, CaO and deionized water at initial C/S ratios between 1.0-1.7. Phase composition and structural and morphology characteristics...The samples of the C-S-H series were synthesized by hydrothermal reaction of fumed silica, CaO and deionized water at initial C/S ratios between 1.0-1.7. Phase composition and structural and morphology characteristics of C-S-H samples were analyzed by XRD, IR and SEM. The experimental results showed that the d-spacing of (002), (110) and (020) decreased, the d-spacing of (200) increased, and the d-spacing of (310) varied randomly, the polymerization of silica tetrahedra of C-S-H decreased, and morphology of C-S-H samples varied from sheet shapes to long reticular fibers as C/S ratio increased.展开更多
Firm joins were obtained between Ti(C,N)-based cermet and steel with Ag-Cu-Zn-Ni filler metal by vacuum brazing. The effects of technological parameters such as brazing temperature, holding time, and filler thicknes...Firm joins were obtained between Ti(C,N)-based cermet and steel with Ag-Cu-Zn-Ni filler metal by vacuum brazing. The effects of technological parameters such as brazing temperature, holding time, and filler thickness on the shear strength of the joints were investigated. The microstructure of welded area and the reaction products of the filler metal were examined by scanning electron microscopy (SEM), metallographic microscope (OM), energy-dispersive X-ray analysis (EDS), and X-ray diffraction (XRD). The brazing temperature of 870℃, holding time of 15 min, and filler thickness of 0.4 mm are a set of optimum technological parameters, under which the maximum shear strength of the joints, 176.5 MPa, is achieved. The results of microstructure show that the wettability of the filler metal on Ti(C,N)-based cermet and steel is well. A mutual solution layer and a diffusion layer exist between the welding base materials and the filler metal.展开更多
The most important parameter used to determine force reduction factors in force-based design procedures adopted in the current seismic codes is the structural ductility. For a structure supported on a flexible foundat...The most important parameter used to determine force reduction factors in force-based design procedures adopted in the current seismic codes is the structural ductility. For a structure supported on a flexible foundation, the ductility factor could be affected by foundation compliances. The ductility factors given in the current codes are mostly assigned ignoring the effect of SSI and therefore the objective of this research is to assess the significance of SSI phenomenon on ductility factors of stack-like structures. The deformed configuration of stack-fike structures is idealized as an assemblage of beam elements considering nonlinear moment-curvature relations, while a linear sway-rocking model was implemented to model the supporting soil. Using a set of artificial records, repeated linear and nonlinear analyses were performed by gradually increasing the intensity of acceleration to a level where the first yielding of steel in linear and nonlinear analyses is observed and a level corresponding to the stack collapse in the nonlinear analysis. The difference between inelastic and elastic resistance in terms of displacement ductility factors has been quantified. The results indicate that foundation flexibility can decrease the ductility of the system and neglecting this phenomenon may lead to erroneous conclusions in the prediction of the seismic performance of flexibly-supported R/C stack-like structures.展开更多
文摘In many cases, seismic appraisal of existing structures is carried out by the two step method and seismic strengthening of R.C. frame structures is solved just based on rough calculation or experience of designers, which may lead to either lack of safety or too conservative in design. According to some related criteria and experts experience, a computer program is developed specially for seismic appraisal and seismic strengthening of R.C. frames (not more than 10 storeys) in this paper. Because the progra...
基金financial support from the SERB-SURE under file number of SUR/2022/003129Jong Hyeok Park acknowledges the support of the National Research Foundation of Korea (NRF)funded by the Ministry of Science and ICT (RS-2023-00302697,RS-2023-00268523).
文摘Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance.
基金financially supported by the National Natural Science Foundation of China(51972049,52073010,and 52373259)the Projects of the Science and Technology Department of Jilin Province(20230201132GX)the Projects of the Education Department of Jilin Province(JJKH20220123KJ)。
文摘The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.
基金Funded by the Key R&D Projects in Hubei Province of China(No:2020BAB061)。
文摘Cu^(+)-doped alkali borosilicate glasses with different Na_(2)O contents were prepared by the melting method,and the effects of different R values(R=Na_(2)O/B_(2)O_(3))on the structure,ion presence state and luminescence properties of Cu^(+)-doped alkali borosilicate glasses were investigated.The analysis by FT-IR and Raman spectroscopy shows that,with the increase of R value of the glass,the[BO_(3)]in the structure of Cu^(+)-doped alkali borosilicate glass transforms into[BO_(4)]and the number of non-bridging oxygen in the glass network appears to be slightly increased.The absorption spectra and EPR analysis reveal that the Cu^(+)content in the glass gradually decreases and the Cu^(2+)content gradually increases as the R value of the glass increases.XPS and PL tests further indicate that the transformation of the octahedral coordination structure of Cu^(+)to the octahedral coordination structure of Cu^(2+)and the cubic coordination structure of Cu^(+)occurs in the glass as the R value of the glass increases.This transformation can effectively reduce the concentration quenching phenomenon of Cu^(+)and improve the fluorescence luminescence intensity of the glass samples.Meanwhile,the samples were found to have luminescence tunability as well as good thermal stability.
文摘Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H_(2),which remains challenging.Here,the photo-catalytic activity for glucose decomposition to HCOOH,CO(C_(1) chemicals),and H_(2) on Cu/TiO_(2)was enhanced by nitrogen doping.Owing to nitrogen doping,atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO_(2).The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit,distinct from undoped Cu/TiO_(2).Therefore,the lifetime of charge carriers is prolonged,resulting in the pro-duction of C_(1) chemicals and H_(2) with productivities 1.7 and 2.1 folds that of Cu/TiO_(2).This work pro-vides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.
基金Projects(50861002,51071053)supported by the National Natural Science Foundation of ChinaProject(0991051)supported by NaturalScience Foundation of Guangxi Province,China+1 种基金Project(KF0803)supported by Open Project of Key Laboratory of Materials Design and Preparation Technology of Hunan Province,ChinaProject(X071117)supported by Scientific Research Foundation of Guangxi University,China
文摘The microstructure of the 18R-type long period stacking ordered (LPSO) phase in Mg 97 Y 2 Zn 1 alloy was investigated by the first principles calculation. The arrangement rule of Zn and Y atoms in the LPSO structure is determined theoretically. The calculation results reveal that the additive atoms are firstly located in the fault layers at the two ends of the 18R-type LPSO structure, and then extend to fault layers in the interior, which is in good agreement with the experimental observations. This feature also implies the microstructural relationship between 18R and other LPSO structures. The cohesive energy and the formation heat indicate the dependence of the stability of 18R LPSO structure on contents of Y and Zn atoms. The calculated electronic structures reveal the underlying mechanism of microstructure and the stability of 18R LPSO structure.
文摘Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their possibly corresponding miRNAs in C. elegans. Methods Total 55 genetic loci required for the amphid structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 30 genes among the 55 genetic loci selected have their possible corresponding regulatory miRNA(s), and identified genes participate in the regulation of almost all aspects of amphid structure and function. In addition, our data suggest that both the amphid structure and the amphid functions might be regulated by a series of network signaling pathways. Moreover, the distribution of miRNAs along the 3' untranslated region (UTR) of these 30 genes exhibits different patterns. Conclusion We present the possible miRNA-mediated signaling pathways involved in the regulation of chemosensation and thermosensation by controlling the corresponding sensory neuron and interneuron functions. Our work will be useful for better understanding of the miRNA-mediated control of the chemotaxis and thermotaxis in C. elegans.
基金The Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Traditionally governance structures are classified into "hierarchy or market" or "equity or non-equity." However,such classifications may not be effective in characterizing all governance structures of research and development(R D) alliances.Therefore,the first objective of this study is to investigate why there exist different organizational governance structures in managing R D alliances;the second objective of this study is to give strategic advice in choosing appropriate forms with respect to various characteristics of R D alliances.Through the theoretical lens that integrate both transaction cost economics(TCE) and the resource-based view(RBV),a model that focuses on six major factors is developed for determining governance structure choices,namely,technological uncertainty,cultural difference,asset specificity,technology complementarity,appropriability of the individual firm's know-how,and trust.An R D alliance with higher technological uncertainty,larger cultural differences,and greater concerns for protecting an individual's know-how is more likely to adopt non-integrated alliances as the governing structure.An R D alliance with a higher degree of asset-specificity,greater technology complementarity and greater trust among partnering organizations is more likely to adopt integrated alliances as the governing structure;an R D alliance in the face of lower technological uncertainty will tend to adopt integrated alliances.The more aligned the choice of the governance structure with its determinants,the better the R D alliance will perform,and vice versa.
基金Project(11204090)supported by the National Natural Science Foundation of ChinaProject(2013KJCX0050)supported by the Department of Education of Guangdong Province+6 种基金ChinaProjects(2014B0404040672014A0404010052015A0404040432015A090905003201508030033)supported by the Scientific and Technological Plan of Guangdong Province and Guangzhou CityChina
文摘A porous coral-structured Si/C composite as an anode material was fabricated by coating Si nanoparticles with a carbon layer from polyvinyl alcohol(PVA), erosion of hydrofluoric(HF) acid, and secondary coating with pitch. Three samples with different pitch contents of 30%, 40% and 50% were synthesized. The composition and morphology of the composites were characterized by X-ray diffractometry(XRD) and scanning electron microscopy(SEM), respectively, and the properties were tested by electrochemical measurements. The results indicated that the composites showed obviously enhanced electrochemical performance compared with that without secondary carbon coating. The second discharge capacity of the composite was 773 m A·h/g at a current density of 100 m A/g, and still retained 669 m A·h/g after 60 cycles with a small capacity fade of less than 0.23%/cycle, while the content of secondary carbon source of pitch was set at 40%. Therefore, the cycle stability of the composite could be excellently improved by regulating carbon content of secondary coating.
基金Project(2013AA050901)supported by the National High-tech Research and Development Program of China
文摘In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.
基金Funded by the National Basic Research Program of China (973 Program) (No. 2009CB623201)the National Natural Science Foundation of China (No.51072150)
文摘The samples of the C-S-H series were synthesized by hydrothermal reaction of fumed silica, CaO and deionized water at initial C/S ratios between 1.0-1.7. Phase composition and structural and morphology characteristics of C-S-H samples were analyzed by XRD, IR and SEM. The experimental results showed that the d-spacing of (002), (110) and (020) decreased, the d-spacing of (200) increased, and the d-spacing of (310) varied randomly, the polymerization of silica tetrahedra of C-S-H decreased, and morphology of C-S-H samples varied from sheet shapes to long reticular fibers as C/S ratio increased.
基金supported by the National Natural Science Foundation of China (No. 50074014)
文摘Firm joins were obtained between Ti(C,N)-based cermet and steel with Ag-Cu-Zn-Ni filler metal by vacuum brazing. The effects of technological parameters such as brazing temperature, holding time, and filler thickness on the shear strength of the joints were investigated. The microstructure of welded area and the reaction products of the filler metal were examined by scanning electron microscopy (SEM), metallographic microscope (OM), energy-dispersive X-ray analysis (EDS), and X-ray diffraction (XRD). The brazing temperature of 870℃, holding time of 15 min, and filler thickness of 0.4 mm are a set of optimum technological parameters, under which the maximum shear strength of the joints, 176.5 MPa, is achieved. The results of microstructure show that the wettability of the filler metal on Ti(C,N)-based cermet and steel is well. A mutual solution layer and a diffusion layer exist between the welding base materials and the filler metal.
文摘The most important parameter used to determine force reduction factors in force-based design procedures adopted in the current seismic codes is the structural ductility. For a structure supported on a flexible foundation, the ductility factor could be affected by foundation compliances. The ductility factors given in the current codes are mostly assigned ignoring the effect of SSI and therefore the objective of this research is to assess the significance of SSI phenomenon on ductility factors of stack-like structures. The deformed configuration of stack-fike structures is idealized as an assemblage of beam elements considering nonlinear moment-curvature relations, while a linear sway-rocking model was implemented to model the supporting soil. Using a set of artificial records, repeated linear and nonlinear analyses were performed by gradually increasing the intensity of acceleration to a level where the first yielding of steel in linear and nonlinear analyses is observed and a level corresponding to the stack collapse in the nonlinear analysis. The difference between inelastic and elastic resistance in terms of displacement ductility factors has been quantified. The results indicate that foundation flexibility can decrease the ductility of the system and neglecting this phenomenon may lead to erroneous conclusions in the prediction of the seismic performance of flexibly-supported R/C stack-like structures.