The clustering technique is used to examine each pixel in the image which assigned to one of the clusters depending on the minimum distance to obtain primary classified image into different intensity regions. A waters...The clustering technique is used to examine each pixel in the image which assigned to one of the clusters depending on the minimum distance to obtain primary classified image into different intensity regions. A watershed transformation technique is then employes. This includes: gradient of the classified image, dividing the image into markers, checking the Marker Image to see if it has zero points (watershed lines). The watershed lines are then deleted in the Marker Image created by watershed algorithm. A Region Adjacency Graph (RAG) and Region Adjacency Boundary (RAB) are created between two regions from Marker Image. Finally region merging is done according to region average intensity and two edge strengths (T1, T2). The approach of the authors is tested on remote sensing and brain MR medical images. The final segmentation result is one closed boundary per actual region in the image.展开更多
针对图像分水岭变换存在的过分割问题,提出了一种快速区域合并算法.该算法先对梯度图像进行Lee滤波以降低分水岭变换的过分割程度,在传统分水岭变换初步分割的基础上,利用区域邻接图(RAG,Region Ad jacency Graph)的邻接表数据结构描述...针对图像分水岭变换存在的过分割问题,提出了一种快速区域合并算法.该算法先对梯度图像进行Lee滤波以降低分水岭变换的过分割程度,在传统分水岭变换初步分割的基础上,利用区域邻接图(RAG,Region Ad jacency Graph)的邻接表数据结构描述过分割区域之间的关系,采用分级阈值合并的方式完成区域合并,以降低合并计算的复杂度.合并过程中,将基于区域相对边界强度和边界长度的相似度度量准则与传统的区域灰度均值差异度准则相结合,构成新的区域可合并度综合评价函数,以保证区域合并准确可靠.实验结果表明,与传统的分水岭变换区域合并算法相比,该算法有效地提高了区域合并的准确性,并大幅提升了运算速度.展开更多
文摘The clustering technique is used to examine each pixel in the image which assigned to one of the clusters depending on the minimum distance to obtain primary classified image into different intensity regions. A watershed transformation technique is then employes. This includes: gradient of the classified image, dividing the image into markers, checking the Marker Image to see if it has zero points (watershed lines). The watershed lines are then deleted in the Marker Image created by watershed algorithm. A Region Adjacency Graph (RAG) and Region Adjacency Boundary (RAB) are created between two regions from Marker Image. Finally region merging is done according to region average intensity and two edge strengths (T1, T2). The approach of the authors is tested on remote sensing and brain MR medical images. The final segmentation result is one closed boundary per actual region in the image.
文摘针对图像分水岭变换存在的过分割问题,提出了一种快速区域合并算法.该算法先对梯度图像进行Lee滤波以降低分水岭变换的过分割程度,在传统分水岭变换初步分割的基础上,利用区域邻接图(RAG,Region Ad jacency Graph)的邻接表数据结构描述过分割区域之间的关系,采用分级阈值合并的方式完成区域合并,以降低合并计算的复杂度.合并过程中,将基于区域相对边界强度和边界长度的相似度度量准则与传统的区域灰度均值差异度准则相结合,构成新的区域可合并度综合评价函数,以保证区域合并准确可靠.实验结果表明,与传统的分水岭变换区域合并算法相比,该算法有效地提高了区域合并的准确性,并大幅提升了运算速度.