With the development of high-speed railways in China,more than 2000 high-speed trains will be put into use.Safety and efficiency of railway transportation is increasingly important.We have designed a high availability...With the development of high-speed railways in China,more than 2000 high-speed trains will be put into use.Safety and efficiency of railway transportation is increasingly important.We have designed a high availability quadruple vital computer (HAQVC) system based on the analysis of the architecture of the traditional double 2-out-of-2 system and 2-out-of-3 system.The HAQVC system is a system with high availability and safety,with prominent characteristics such as fire-new internal architecture,high efficiency,reliable data interaction mechanism,and operation state change mechanism.The hardware of the vital CPU is based on ARM7 with the real-time embedded safe operation system (ES-OS).The Markov modeling method is designed to evaluate the reliability,availability,maintainability,and safety (RAMS) of the system.In this paper,we demonstrate that the HAQVC system is more reliable than the all voting triple modular redundancy (AVTMR) system and double 2-out-of-2 system.Thus,the design can be used for a specific application system,such as an airplane or high-speed railway system.展开更多
This paper presents a fault-tolerant computer system. It is designed as a double 2-out-of-2 architecture based on component redundant technique. Also, a quantitative probabilistic model is presented for evaluating the...This paper presents a fault-tolerant computer system. It is designed as a double 2-out-of-2 architecture based on component redundant technique. Also, a quantitative probabilistic model is presented for evaluating the reliability, availability, maintainability and safety (RAMS) of this architecture. Hierarchical modeling method and Markov modeling method are used in RAMS analysis to evaluate the system characteristics. The double 2-out-of-2 system is compared with the other two systems, all voting triple modular redundancy (AVTMR) system and dual-duplex system. According to the result, the double 2-out-of-2 system has the highest dependability. Especially, the system can satisfy the safety integrity level (SIL) 4, which means the system’s probability of catastrophic failure less than or equal to 10-8 per hour, therefore, it can be applied to life critical systems such as high-speed railway systems.展开更多
The Hong Kong Observatory (HKO) provides low-level turbulence alerting service for the Hong Kong International Airport (HKIA) through the windshear and turbulence warning system (WTWS). In the WTWS, turbulence intensi...The Hong Kong Observatory (HKO) provides low-level turbulence alerting service for the Hong Kong International Airport (HKIA) through the windshear and turbulence warning system (WTWS). In the WTWS, turbulence intensities along the flight paths of the airport are estimated based upon correlation equations established between the surface anemometer data and the turbulence data from research aircraft before the opening of the airport. The research aircraft data are not available on day-to-day basis. The remote sensing meteorological instruments, such as the Doppler light detection and ranging (LIDAR) and radar, may be used to provide direct measurements of turbulence intensities over the runway corridors. The performances of LIDAR- and radar-based turbulence intensity data are studied in this paper based on actual turbulence intensity measurements made on 423 commercial jets for a typical case of terrain-induced turbulence in association with a typhoon. It turns out that, with the tuning of the relative operating characteristic (ROC) curve between hit rate and false alarm rate, the LIDAR-based turbulence intensity measurement performs better than the anemometer-based estimation of WTWS for turbulence intensity at moderate level or above. On the other hand, the radar-based measurement does not perform as well when compared with WTWS. By combining LIDAR- and radar-based measurements, the performance is slightly better than WTWS, mainly as a result of contribution from LIDAR-based measurement. As a result, the LIDAR-based turbulence intensity measurement could be used to replace anemometer-based estimate for non-rainy weather conditions. Further enhancements of radar-based turbulence intensity measurement in rain would be necessary.展开更多
基金Project(No.2009BAG12A05) supported by the National Key Technology R&D Program of China
文摘With the development of high-speed railways in China,more than 2000 high-speed trains will be put into use.Safety and efficiency of railway transportation is increasingly important.We have designed a high availability quadruple vital computer (HAQVC) system based on the analysis of the architecture of the traditional double 2-out-of-2 system and 2-out-of-3 system.The HAQVC system is a system with high availability and safety,with prominent characteristics such as fire-new internal architecture,high efficiency,reliable data interaction mechanism,and operation state change mechanism.The hardware of the vital CPU is based on ARM7 with the real-time embedded safe operation system (ES-OS).The Markov modeling method is designed to evaluate the reliability,availability,maintainability,and safety (RAMS) of the system.In this paper,we demonstrate that the HAQVC system is more reliable than the all voting triple modular redundancy (AVTMR) system and double 2-out-of-2 system.Thus,the design can be used for a specific application system,such as an airplane or high-speed railway system.
文摘This paper presents a fault-tolerant computer system. It is designed as a double 2-out-of-2 architecture based on component redundant technique. Also, a quantitative probabilistic model is presented for evaluating the reliability, availability, maintainability and safety (RAMS) of this architecture. Hierarchical modeling method and Markov modeling method are used in RAMS analysis to evaluate the system characteristics. The double 2-out-of-2 system is compared with the other two systems, all voting triple modular redundancy (AVTMR) system and dual-duplex system. According to the result, the double 2-out-of-2 system has the highest dependability. Especially, the system can satisfy the safety integrity level (SIL) 4, which means the system’s probability of catastrophic failure less than or equal to 10-8 per hour, therefore, it can be applied to life critical systems such as high-speed railway systems.
文摘The Hong Kong Observatory (HKO) provides low-level turbulence alerting service for the Hong Kong International Airport (HKIA) through the windshear and turbulence warning system (WTWS). In the WTWS, turbulence intensities along the flight paths of the airport are estimated based upon correlation equations established between the surface anemometer data and the turbulence data from research aircraft before the opening of the airport. The research aircraft data are not available on day-to-day basis. The remote sensing meteorological instruments, such as the Doppler light detection and ranging (LIDAR) and radar, may be used to provide direct measurements of turbulence intensities over the runway corridors. The performances of LIDAR- and radar-based turbulence intensity data are studied in this paper based on actual turbulence intensity measurements made on 423 commercial jets for a typical case of terrain-induced turbulence in association with a typhoon. It turns out that, with the tuning of the relative operating characteristic (ROC) curve between hit rate and false alarm rate, the LIDAR-based turbulence intensity measurement performs better than the anemometer-based estimation of WTWS for turbulence intensity at moderate level or above. On the other hand, the radar-based measurement does not perform as well when compared with WTWS. By combining LIDAR- and radar-based measurements, the performance is slightly better than WTWS, mainly as a result of contribution from LIDAR-based measurement. As a result, the LIDAR-based turbulence intensity measurement could be used to replace anemometer-based estimate for non-rainy weather conditions. Further enhancements of radar-based turbulence intensity measurement in rain would be necessary.