针对云无线网络(Cloud Radio Access Network,C-RAN)中传统静态资源分配效率低下以及动态无线资源分配中资源种类单一的问题,提出了一种基于用户服务质量(Qulity of Service,QoS)约束的动态无线资源分配方案,对无线资源从无线射频单元(R...针对云无线网络(Cloud Radio Access Network,C-RAN)中传统静态资源分配效率低下以及动态无线资源分配中资源种类单一的问题,提出了一种基于用户服务质量(Qulity of Service,QoS)约束的动态无线资源分配方案,对无线资源从无线射频单元(Remote Radio Head,RRH)选择、子载波分配和RRH功率分配三个维度进行研究。首先,根据传统的C-RAN系统传输模型和QoS约束在时变业务环境下建立了以发射功率为变量,以吞吐量最大为优化目标的优化问题;然后,基于改进的遗传算法,将原优化方案转变为通过优化RRH选择、子载波分配和RRH功率分配来达到提高系统吞吐量的目的;最后,将改进的遗传算法与其他智能算法在种群规模变化下进行了时间复杂度对比。实验结果表明,所提算法具有较低时间复杂度,所提资源分配方案下的平均吞吐量增益为17%。展开更多
In order to reduce the total resistance of a hull, an optimization framework for the bulbous bow optimization was presented. The total resistance in calm water was selected as the objective function, and the overset m...In order to reduce the total resistance of a hull, an optimization framework for the bulbous bow optimization was presented. The total resistance in calm water was selected as the objective function, and the overset mesh technique was used for mesh generation. RANS method was used to calculate the total resistance of the hull. In order to improve the efficiency and smoothness of the geometric reconstruction, the arbitrary shape deformation (ASD) technique was introduced to change the shape of the bulbous bow. To improve the global search ability of the particle swarm optimization (PSO) algorithm, an improved particle swarm optimization (IPSO) algorithm was proposed to set up the optimization model. After a series of optimization analyses, the optimal hull form was found. It can be concluded that the simulation based design framework built in this paper is a promising method for bulbous bow optimization.展开更多
文摘针对云无线网络(Cloud Radio Access Network,C-RAN)中传统静态资源分配效率低下以及动态无线资源分配中资源种类单一的问题,提出了一种基于用户服务质量(Qulity of Service,QoS)约束的动态无线资源分配方案,对无线资源从无线射频单元(Remote Radio Head,RRH)选择、子载波分配和RRH功率分配三个维度进行研究。首先,根据传统的C-RAN系统传输模型和QoS约束在时变业务环境下建立了以发射功率为变量,以吞吐量最大为优化目标的优化问题;然后,基于改进的遗传算法,将原优化方案转变为通过优化RRH选择、子载波分配和RRH功率分配来达到提高系统吞吐量的目的;最后,将改进的遗传算法与其他智能算法在种群规模变化下进行了时间复杂度对比。实验结果表明,所提算法具有较低时间复杂度,所提资源分配方案下的平均吞吐量增益为17%。
基金financially supported by the National Natural Science Foundation of China(Grant No.51009087)the National Science Foundation of Shanghai(Grant No.14ZR1419500)
文摘In order to reduce the total resistance of a hull, an optimization framework for the bulbous bow optimization was presented. The total resistance in calm water was selected as the objective function, and the overset mesh technique was used for mesh generation. RANS method was used to calculate the total resistance of the hull. In order to improve the efficiency and smoothness of the geometric reconstruction, the arbitrary shape deformation (ASD) technique was introduced to change the shape of the bulbous bow. To improve the global search ability of the particle swarm optimization (PSO) algorithm, an improved particle swarm optimization (IPSO) algorithm was proposed to set up the optimization model. After a series of optimization analyses, the optimal hull form was found. It can be concluded that the simulation based design framework built in this paper is a promising method for bulbous bow optimization.
基金This work is supported by the National Natural Science Foundation of China (No. 60672059 and No. 60496315) and the National High Technology Research and Development Program of China (No. 2006AA01 Z233).