Objective To examine the effect of neuropeptide Y (NPY) on TGF-β1 production in RAW264.7 macrophages. Methods Enzyme linked immunosorbent assay (ELISA) was used to detect TGF-β1 production. Cell counting kit 8 ...Objective To examine the effect of neuropeptide Y (NPY) on TGF-β1 production in RAW264.7 macrophages. Methods Enzyme linked immunosorbent assay (ELISA) was used to detect TGF-β1 production. Cell counting kit 8 (CCK-8) was used to assay the viability of RAW264.7 cells. Western blot was used to detect the phosphorylation of PI3K p85. Results NPY treatment could promote TGF-β1 production and rapid phosphorylation of PI3K p85 in RAW264.7 cells via Y1 receptor. The elevated TGF-β 1 production induced by NPY could be abolished by wortrnannin pretreatment. Conclusion NPY may elicit TGF-β production in RAW264.7 cells via Y1 receptor, and the activated PI3K pathway may account for this effect.展开更多
Objective To investigate in vitro cytotoxicity and oxidative stress response induced by multiwalled carbon nanotubes (MWCNTs). Methods Cultured macrophages (murine RAW264.7 cells) and alveolar epithelium cells typ...Objective To investigate in vitro cytotoxicity and oxidative stress response induced by multiwalled carbon nanotubes (MWCNTs). Methods Cultured macrophages (murine RAW264.7 cells) and alveolar epithelium cells type II (human A549 lung cells) were exposed to the blank control, DNA salt control, and the MWCNTs suspensions at 2.5, 10, 25, and 100 ug/mL for 24 h. Each treatment was evaluated by cell viability, cytotoxicity and oxidative stress. Results Overall, both cell lines had similar patterns in response to the cytotoxicity and oxidative stress of MWCNTs. DNA salt treatment showed no change compared to the blank control. In both cell lines, significant changes at the doses of 25 and 100 ug/mL treatments were found in cell viabilities, cytotoxicity, and oxidative stress indexes. The reactive oxygen species (ROS) generation was also found to be significantly higher at the dose of 10 ug/mL treatment, whereas no change was seen in most of the indexes. The ROS generation in both cell lines went up in minutes, reached the climax within an hour and faded down after several hours. Conclusion Exposure to MWCNTs resulted in a dose-dependent cytotoxicity in cultured RAW264.7 cells and A549 cells, that was closely correlated to the increased oxidative stress.展开更多
Activation of acid-sensing ion channels (ASICs) plays an important role in neuroinflammation. Macrophage recruitment to the sites of inflammation is an essential step in host defense. ASIC1 and ASIC3 have been repor...Activation of acid-sensing ion channels (ASICs) plays an important role in neuroinflammation. Macrophage recruitment to the sites of inflammation is an essential step in host defense. ASIC1 and ASIC3 have been reported to mediate the endocytosis and maturation of bone marrow derived macrophages. However, the expression and inflammation-related functions of ASICs in RAW 264.7 cells, another common macrophage, are still elusive. In the present study, we first demonstrated the presence of ASIC 1, ASIC2a and ASIC3 in RAW 264.7 macrophage cell line by using reverse transcriptase polymerase chain reaction (RT-PCR), Western blotting and immunofluorescence experiments. The non-specific ASICs inhibitor amiloride and specific homomeric ASICla blocker PcTxl reduced the production of iNOS and COX-2 by LPS-induced activating RAW 264.7 cells. Furthermore, not only amiloride but also PcTxl inhibited the migration and LPS-induced apoptosis of RAW 264.7 cells. Taken together, our findings suggest that ASICs promote the inflammatory response and apoptosis of RAW 264.7 cells, and ASICs may serve as a potential novel target for immunological disease therapy.展开更多
Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cell...Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cells. Both the level of released nitric oxide(NO) and expression of inducible nitric oxide synthase(iNOS) m RNA were significantly enhanced in the RAW264.7 macrophages cells treated by Vp2a-Ⅱ and Vp3. Vp2a-Ⅱ(100–800 μg/m L) and Vp3(400 μg/mL) could significantly increase the phagocytic activity of RAW264.7 cells and the secretion and m RNA expression of TNF-α and IL-6 in a concentrationdependent manner through affecting mitogen-activated protein kinase(MAPK) activity and nuclear factor κB(NF-κB) nuclear translocation. Vp2a-Ⅱ might activate the MAPK signaling pathways and induce the nuclear translocation of NF-κB p65, whilst Vp3 likely activated the NF-κB and MAPK signaling pathways without influencing the p38 MAPK route.展开更多
In the present study, 3-methylcarbazole and 1-methoxy-3-methylcarbazole were isolated from the culture of Streptomyces sp. LJK109, endophyte of Alpinia galanga Swartz. 3-methylcarbazole, a carbazole derivative, has be...In the present study, 3-methylcarbazole and 1-methoxy-3-methylcarbazole were isolated from the culture of Streptomyces sp. LJK109, endophyte of Alpinia galanga Swartz. 3-methylcarbazole, a carbazole derivative, has been found to be highly potent as anti-inflammatory agent. The immunomodulatory activity of these agents in toll like receptor (TLR)-activated RAW 264.7 macrophages induced by lipopolysaccharide (LPS), Poly(I:C), and pam3CSK was investigated by assessing nitric oxide (NO) and pro-inflammatory cytokines. The 3-methylcarbazoles dose-dependently suppressed the release of NO, PGE2, TNF-α, IL-1β, IL-6 and IL-10 in LPS- and pam3CSK-activated macrophages but not in Poly(I:C)-activated macrophages. Our results suggest that 3-methylcarbazoles can be further developed as a promising anti-inflammatory remedy.展开更多
Objective: To compare the inhibitory effects of acetone extracts from the stem bark of three Acacia species(Acacia dealbata, Acacia ferruginea and Acacia leucophloea) on nitric oxide production.Methods: The lipopolysa...Objective: To compare the inhibitory effects of acetone extracts from the stem bark of three Acacia species(Acacia dealbata, Acacia ferruginea and Acacia leucophloea) on nitric oxide production.Methods: The lipopolysaccharide(LPS)-stimulated RAW 264.7 macrophage cells were used to investigate the regulatory effect of acetone extracts of three Acacia stem barks on nitric oxide production and the expression of inducible nitric oxide synthase,cyclooxygenase-2 and tumor necrosis factor-a. Further, the phenolic profile of acetone extracts from the Acacia barks was determined by liquid chromatography-mass spectrometry/mass spectrometry analysis.Results: All the three extracts significantly decreased LPS-induced NO production as well as the expression of inducible nitric oxide synthase, cyclooxygenase-2 and tumor necrosis factor-a in a concentration dependent manner(25, 50 and 75 mg/m L). In the liquid chromatography-mass spectrometry/mass spectrometry analysis, acetone extract of Acacia ferruginea bark revealed the presence of 12 different phenolic components including quercetin, catechin, ellagic acid and rosmanol. However, Acacia dealbata and Acacia leucophloea barks each contained 6 different phenolic components.Conclusions: The acetone extracts of three Acacia species effectively inhibited the NO production in LPS-stimulated RAW 264.7 cells and the presence of different phenolic components in the bark extracts might be responsible for reducing the NO level in cells.展开更多
OBJECTIVE The emerging role of chronic inflammation is the major degenerative diseases of modern society such as periodontitis,atherosclerosis,rheumatoid arthritis,Parkinson′s disease and even cancer.Eight components...OBJECTIVE The emerging role of chronic inflammation is the major degenerative diseases of modern society such as periodontitis,atherosclerosis,rheumatoid arthritis,Parkinson′s disease and even cancer.Eight components were isolated from Derris laxiflora Benth.,In this study,we found these compounds from Derris laxiflora Benth suppress lipopolysaccharide-induced inflammatory response in murine macrophage(RAW 264.7)cells.METHODS RAW 264.7cells were cultured in DMEM media supplemented with 10%(V/V)heated-inactivated FBS,penicillin 100U·mL-1 and streptomycin 100μg·mL-1.The cells were incubated at 37℃in a humidified atmosphere of 5%CO2in air.RAW264.7cells were seeded in a 24-well plate at a density of 2×105 mL-1 and then incubated with or without LPS(100ng·mL-1)in the absence or presence of compounds for 24 h.Effects of these isolates on NO production were measured indirectly by analysis of nitrite levels using the Griess reaction.Quercetin was used as a positive control.RESULTS ight components were isolated from Derris laxiflora Benth.,including three new pterocarpans 7,6′-dihydroxy-3′-methoxypterocarpan(1),derrispisatin(2),derriscoumaronochromone(3)and three new flavonoids cis-3,4′-dihydroxy-5,7-dimethoxyflavan(4),derriflavanone B(5),iso-lupinenol(6)as well as two known ones,lonchocarpol A(7)and lonchocarpol D(8).The structures of these new compounds were determined by analysis of their spectroscopic data.Raw264.7 cells were treated with the compounds from Derris laxiflora Benth for 24 h.Among them,compounds 5,7 and 8 significantly suppressed the NO production in LPS-treated RAW264.7 cells with IC50 values<10μg·mL-1.CONCLUSION In this study,we found that compounds from Derris laxiflora Benth suppresses lipopolysaccharide-induced inflammatory response in murine Raw264.7 cells.展开更多
Objective:To demonstrate the effect of dieckol from Eisenia bicyclis on osteoclastogenesis using RAW 264.7 cells.Methods:Murine macrophage RAW 264.7 cells were subjected to dieckol treatment,followed by treatment with...Objective:To demonstrate the effect of dieckol from Eisenia bicyclis on osteoclastogenesis using RAW 264.7 cells.Methods:Murine macrophage RAW 264.7 cells were subjected to dieckol treatment,followed by treatment with receptor activator of nuclear factor kappa-B ligand(RANKL)to induce osteoclastogenesis.Tartrate-resistant acid phosphatase(TRAP)activity was examined using a TRAP activity kit.Western blotting analysis was conducted to examine the level of osteoclast-related factors,including TRAP and calcitonin receptor(CTR),transcriptional factors,including c-Fos,c-Jun,and nuclear factor of activated T cells cytoplasmic 1(NFATc1),nuclear factor kappa-B(NF-κB),extracellular signal-regulated kinase(ERK),and c-Jun N-terminal kinase(JNK).Immunofluorescence staining was conducted to examine the expression of c-Fos,c-Jun,and NFATc1.Results:Among the four phlorotannin compounds present in Eisenia bicyclis,dieckol significantly hindered osteoclast differentiation and expression of RANKL-induced TRAP and CTR.In addition,dieckol downregulated the expression levels of c-Fos,c-Jun,NFATc1,ERK,and JNK,and suppressed NF-κB signaling.Conclusions:Dieckol can suppress RANKL-induced osteoclastogenesis.Therefore,it has therapeutic potential in treating osteoclastogenesis-associated diseases.展开更多
Geldanamycin (1) had been isolated as a major compound from Streptomyces zerumbet W14;an endophyte of Zingiber zerumbet (L.) Smith. Two new geldanamycin derivatives;17-(tryptamine)-17-demethoxygeldanamycin (2) and 17...Geldanamycin (1) had been isolated as a major compound from Streptomyces zerumbet W14;an endophyte of Zingiber zerumbet (L.) Smith. Two new geldanamycin derivatives;17-(tryptamine)-17-demethoxygeldanamycin (2) and 17-(5’-methoxytryptamine)-17-demethoxygeldanamycin (3) were synthe- sized and their anti-inflammatory activity was evaluated in LPS-induced macrophage RAW 264.7 cells by investigating their effects on the inhibition of production of NO, PGE2, TNF-α, IL-1β, IL-6 and IL-10. The data obtained were consistent with the modulation of TNF-α, IL-1β, IL-6, IL-10 production by these derivatives at concentration of 1 to 5 μg/ml. A similar effect was also observed when LPS-induced NO release and PGE2 production were tested. The inhibitory effects were shown in concentration-dependent manners. From the obtained results, it was concluded that two new gelda- namycin derivatives possess anti-inflammatory activity on LPS-induced RAW 264.7 cells. They could be useful for the management of inflammatory diseases.展开更多
We previously demonstrated that 2-hydroxypropyltrimethyl ammonium chloride chitosan(HACC)promoted the production of nitric oxide(NO)and proinflammatory cytokines by activating the mitogen-activated protein kinases(MAP...We previously demonstrated that 2-hydroxypropyltrimethyl ammonium chloride chitosan(HACC)promoted the production of nitric oxide(NO)and proinflammatory cytokines by activating the mitogen-activated protein kinases(MAPK)and Janus kinase(JAK)/STAT pathways in RAW 264.7 cells,indicating good immunomodulatory activity of HACC.In this study,to further investigate the immunomodulatory mechanisms of HACC,we determined the roles of phosphatidylinositol 3-kinase(PI3K)/Akt,activating protein(AP-1)and nuclear factor kappa B(NF-κB)in HACC-induced activation of RAW 264.7 cells by the western blotting.The results suggest that HACC promoted the phosphorylation of p85 and Akt.Furthermore,c-Jun and p65 were also increased after the treatment of RAW 264.7 cells with HACC,indicating the translocation of NF-κB and AP-1 from cytoplasm to nucleus.In addition,as scanning electron microscopy(SEM)analysis shows,the cell morphology changed after HACC treatment.These findings indicate that HACC activated MAPK,JAK/STAT,and PI3K/Akt signaling pathways dependent on AP-1 and NF-κB activation in RAW 264.7 cells,ultimately leading to the increase of NO and cytokines.展开更多
Raw264.7 cells are monocytic cells that can differentiate to activated macrophages after lipopoly-saccharide (LPS) stimulation. Here, we analyzed the factors secreted by Raw264.7 cells in response to LPS. The culture ...Raw264.7 cells are monocytic cells that can differentiate to activated macrophages after lipopoly-saccharide (LPS) stimulation. Here, we analyzed the factors secreted by Raw264.7 cells in response to LPS. The culture media of LPS-treated Raw264.7 cells was able to stimulate growth in MEF1F2 and NIH3T3 mouse fibroblast cell lines. We identified five secreted and LPS-induced chemokines, CCL2, CCL5, CCL12, CxCL2, and CxCL10, by microarray analysis and tested their stimulatory activity. We used commercially available bacterially expressed proteins, and found only CCL12, CxCL2 and CxCL10 stimulated growth in MEF1F2 and NIH3T3 cells. The saturation density of the cells was also increased. They were not able to stimulate growth in v-Src transformed MEF1F2 or SWAP-70 transformed NIH3T3 cells. We examined signaling pathways activated by these three factors. We found that ERK and p38 MAP kinase were activated and were required for the activity to stimulate the cell growth. Other pathways including phosophatidylinositol-3 kinase (PI3K), NFκB pathways were not activated. These results suggest that Raw264.7 cells secretes growth stimulation factors for fibroblasts when differentiated to macrophages implicating that fast growth of them is related to inflamation although the reason is still unclear.展开更多
文摘Objective To examine the effect of neuropeptide Y (NPY) on TGF-β1 production in RAW264.7 macrophages. Methods Enzyme linked immunosorbent assay (ELISA) was used to detect TGF-β1 production. Cell counting kit 8 (CCK-8) was used to assay the viability of RAW264.7 cells. Western blot was used to detect the phosphorylation of PI3K p85. Results NPY treatment could promote TGF-β1 production and rapid phosphorylation of PI3K p85 in RAW264.7 cells via Y1 receptor. The elevated TGF-β 1 production induced by NPY could be abolished by wortrnannin pretreatment. Conclusion NPY may elicit TGF-β production in RAW264.7 cells via Y1 receptor, and the activated PI3K pathway may account for this effect.
基金supported partly by a grant from Shanghai Science and Technology Committee International Collaboration Program (Project No. 055207078)
文摘Objective To investigate in vitro cytotoxicity and oxidative stress response induced by multiwalled carbon nanotubes (MWCNTs). Methods Cultured macrophages (murine RAW264.7 cells) and alveolar epithelium cells type II (human A549 lung cells) were exposed to the blank control, DNA salt control, and the MWCNTs suspensions at 2.5, 10, 25, and 100 ug/mL for 24 h. Each treatment was evaluated by cell viability, cytotoxicity and oxidative stress. Results Overall, both cell lines had similar patterns in response to the cytotoxicity and oxidative stress of MWCNTs. DNA salt treatment showed no change compared to the blank control. In both cell lines, significant changes at the doses of 25 and 100 ug/mL treatments were found in cell viabilities, cytotoxicity, and oxidative stress indexes. The reactive oxygen species (ROS) generation was also found to be significantly higher at the dose of 10 ug/mL treatment, whereas no change was seen in most of the indexes. The ROS generation in both cell lines went up in minutes, reached the climax within an hour and faded down after several hours. Conclusion Exposure to MWCNTs resulted in a dose-dependent cytotoxicity in cultured RAW264.7 cells and A549 cells, that was closely correlated to the increased oxidative stress.
基金This work was supported by grants from the National Natural science Foundation of China (No. 81473199), and the Fundamental Research Funds for the Central Universities (No, 015TS 125).
文摘Activation of acid-sensing ion channels (ASICs) plays an important role in neuroinflammation. Macrophage recruitment to the sites of inflammation is an essential step in host defense. ASIC1 and ASIC3 have been reported to mediate the endocytosis and maturation of bone marrow derived macrophages. However, the expression and inflammation-related functions of ASICs in RAW 264.7 cells, another common macrophage, are still elusive. In the present study, we first demonstrated the presence of ASIC 1, ASIC2a and ASIC3 in RAW 264.7 macrophage cell line by using reverse transcriptase polymerase chain reaction (RT-PCR), Western blotting and immunofluorescence experiments. The non-specific ASICs inhibitor amiloride and specific homomeric ASICla blocker PcTxl reduced the production of iNOS and COX-2 by LPS-induced activating RAW 264.7 cells. Furthermore, not only amiloride but also PcTxl inhibited the migration and LPS-induced apoptosis of RAW 264.7 cells. Taken together, our findings suggest that ASICs promote the inflammatory response and apoptosis of RAW 264.7 cells, and ASICs may serve as a potential novel target for immunological disease therapy.
基金supported by Research on Precision Nutrition and Health Food,Department of Science and Technology of Henan Province(CXJD2021006)。
文摘Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cells. Both the level of released nitric oxide(NO) and expression of inducible nitric oxide synthase(iNOS) m RNA were significantly enhanced in the RAW264.7 macrophages cells treated by Vp2a-Ⅱ and Vp3. Vp2a-Ⅱ(100–800 μg/m L) and Vp3(400 μg/mL) could significantly increase the phagocytic activity of RAW264.7 cells and the secretion and m RNA expression of TNF-α and IL-6 in a concentrationdependent manner through affecting mitogen-activated protein kinase(MAPK) activity and nuclear factor κB(NF-κB) nuclear translocation. Vp2a-Ⅱ might activate the MAPK signaling pathways and induce the nuclear translocation of NF-κB p65, whilst Vp3 likely activated the NF-κB and MAPK signaling pathways without influencing the p38 MAPK route.
文摘In the present study, 3-methylcarbazole and 1-methoxy-3-methylcarbazole were isolated from the culture of Streptomyces sp. LJK109, endophyte of Alpinia galanga Swartz. 3-methylcarbazole, a carbazole derivative, has been found to be highly potent as anti-inflammatory agent. The immunomodulatory activity of these agents in toll like receptor (TLR)-activated RAW 264.7 macrophages induced by lipopolysaccharide (LPS), Poly(I:C), and pam3CSK was investigated by assessing nitric oxide (NO) and pro-inflammatory cytokines. The 3-methylcarbazoles dose-dependently suppressed the release of NO, PGE2, TNF-α, IL-1β, IL-6 and IL-10 in LPS- and pam3CSK-activated macrophages but not in Poly(I:C)-activated macrophages. Our results suggest that 3-methylcarbazoles can be further developed as a promising anti-inflammatory remedy.
基金Supported in part by the Ministry of Trade,Industry and Energy,Korea Institute for Advancement of Technology(KIAT)through the Inter-ER Cooperation Project(Project No.R0000474)
文摘Objective: To compare the inhibitory effects of acetone extracts from the stem bark of three Acacia species(Acacia dealbata, Acacia ferruginea and Acacia leucophloea) on nitric oxide production.Methods: The lipopolysaccharide(LPS)-stimulated RAW 264.7 macrophage cells were used to investigate the regulatory effect of acetone extracts of three Acacia stem barks on nitric oxide production and the expression of inducible nitric oxide synthase,cyclooxygenase-2 and tumor necrosis factor-a. Further, the phenolic profile of acetone extracts from the Acacia barks was determined by liquid chromatography-mass spectrometry/mass spectrometry analysis.Results: All the three extracts significantly decreased LPS-induced NO production as well as the expression of inducible nitric oxide synthase, cyclooxygenase-2 and tumor necrosis factor-a in a concentration dependent manner(25, 50 and 75 mg/m L). In the liquid chromatography-mass spectrometry/mass spectrometry analysis, acetone extract of Acacia ferruginea bark revealed the presence of 12 different phenolic components including quercetin, catechin, ellagic acid and rosmanol. However, Acacia dealbata and Acacia leucophloea barks each contained 6 different phenolic components.Conclusions: The acetone extracts of three Acacia species effectively inhibited the NO production in LPS-stimulated RAW 264.7 cells and the presence of different phenolic components in the bark extracts might be responsible for reducing the NO level in cells.
基金The project supported by Department of Industrial Technology,Ministry of Economic Affairs,Chinese TaipeiMedical and Pharmaceutical Industry Technology and Development Center
文摘OBJECTIVE The emerging role of chronic inflammation is the major degenerative diseases of modern society such as periodontitis,atherosclerosis,rheumatoid arthritis,Parkinson′s disease and even cancer.Eight components were isolated from Derris laxiflora Benth.,In this study,we found these compounds from Derris laxiflora Benth suppress lipopolysaccharide-induced inflammatory response in murine macrophage(RAW 264.7)cells.METHODS RAW 264.7cells were cultured in DMEM media supplemented with 10%(V/V)heated-inactivated FBS,penicillin 100U·mL-1 and streptomycin 100μg·mL-1.The cells were incubated at 37℃in a humidified atmosphere of 5%CO2in air.RAW264.7cells were seeded in a 24-well plate at a density of 2×105 mL-1 and then incubated with or without LPS(100ng·mL-1)in the absence or presence of compounds for 24 h.Effects of these isolates on NO production were measured indirectly by analysis of nitrite levels using the Griess reaction.Quercetin was used as a positive control.RESULTS ight components were isolated from Derris laxiflora Benth.,including three new pterocarpans 7,6′-dihydroxy-3′-methoxypterocarpan(1),derrispisatin(2),derriscoumaronochromone(3)and three new flavonoids cis-3,4′-dihydroxy-5,7-dimethoxyflavan(4),derriflavanone B(5),iso-lupinenol(6)as well as two known ones,lonchocarpol A(7)and lonchocarpol D(8).The structures of these new compounds were determined by analysis of their spectroscopic data.Raw264.7 cells were treated with the compounds from Derris laxiflora Benth for 24 h.Among them,compounds 5,7 and 8 significantly suppressed the NO production in LPS-treated RAW264.7 cells with IC50 values<10μg·mL-1.CONCLUSION In this study,we found that compounds from Derris laxiflora Benth suppresses lipopolysaccharide-induced inflammatory response in murine Raw264.7 cells.
基金supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSITNo. NRF-2020R1A2C1008527)
文摘Objective:To demonstrate the effect of dieckol from Eisenia bicyclis on osteoclastogenesis using RAW 264.7 cells.Methods:Murine macrophage RAW 264.7 cells were subjected to dieckol treatment,followed by treatment with receptor activator of nuclear factor kappa-B ligand(RANKL)to induce osteoclastogenesis.Tartrate-resistant acid phosphatase(TRAP)activity was examined using a TRAP activity kit.Western blotting analysis was conducted to examine the level of osteoclast-related factors,including TRAP and calcitonin receptor(CTR),transcriptional factors,including c-Fos,c-Jun,and nuclear factor of activated T cells cytoplasmic 1(NFATc1),nuclear factor kappa-B(NF-κB),extracellular signal-regulated kinase(ERK),and c-Jun N-terminal kinase(JNK).Immunofluorescence staining was conducted to examine the expression of c-Fos,c-Jun,and NFATc1.Results:Among the four phlorotannin compounds present in Eisenia bicyclis,dieckol significantly hindered osteoclast differentiation and expression of RANKL-induced TRAP and CTR.In addition,dieckol downregulated the expression levels of c-Fos,c-Jun,NFATc1,ERK,and JNK,and suppressed NF-κB signaling.Conclusions:Dieckol can suppress RANKL-induced osteoclastogenesis.Therefore,it has therapeutic potential in treating osteoclastogenesis-associated diseases.
文摘Geldanamycin (1) had been isolated as a major compound from Streptomyces zerumbet W14;an endophyte of Zingiber zerumbet (L.) Smith. Two new geldanamycin derivatives;17-(tryptamine)-17-demethoxygeldanamycin (2) and 17-(5’-methoxytryptamine)-17-demethoxygeldanamycin (3) were synthe- sized and their anti-inflammatory activity was evaluated in LPS-induced macrophage RAW 264.7 cells by investigating their effects on the inhibition of production of NO, PGE2, TNF-α, IL-1β, IL-6 and IL-10. The data obtained were consistent with the modulation of TNF-α, IL-1β, IL-6, IL-10 production by these derivatives at concentration of 1 to 5 μg/ml. A similar effect was also observed when LPS-induced NO release and PGE2 production were tested. The inhibitory effects were shown in concentration-dependent manners. From the obtained results, it was concluded that two new gelda- namycin derivatives possess anti-inflammatory activity on LPS-induced RAW 264.7 cells. They could be useful for the management of inflammatory diseases.
基金Supported by the National Key R&D Program of China(No.2018YFC0311305)the Key Research and Development Program of Shandong Province(Nos.2019GHY112015,2019YYSP028)。
文摘We previously demonstrated that 2-hydroxypropyltrimethyl ammonium chloride chitosan(HACC)promoted the production of nitric oxide(NO)and proinflammatory cytokines by activating the mitogen-activated protein kinases(MAPK)and Janus kinase(JAK)/STAT pathways in RAW 264.7 cells,indicating good immunomodulatory activity of HACC.In this study,to further investigate the immunomodulatory mechanisms of HACC,we determined the roles of phosphatidylinositol 3-kinase(PI3K)/Akt,activating protein(AP-1)and nuclear factor kappa B(NF-κB)in HACC-induced activation of RAW 264.7 cells by the western blotting.The results suggest that HACC promoted the phosphorylation of p85 and Akt.Furthermore,c-Jun and p65 were also increased after the treatment of RAW 264.7 cells with HACC,indicating the translocation of NF-κB and AP-1 from cytoplasm to nucleus.In addition,as scanning electron microscopy(SEM)analysis shows,the cell morphology changed after HACC treatment.These findings indicate that HACC activated MAPK,JAK/STAT,and PI3K/Akt signaling pathways dependent on AP-1 and NF-κB activation in RAW 264.7 cells,ultimately leading to the increase of NO and cytokines.
文摘Raw264.7 cells are monocytic cells that can differentiate to activated macrophages after lipopoly-saccharide (LPS) stimulation. Here, we analyzed the factors secreted by Raw264.7 cells in response to LPS. The culture media of LPS-treated Raw264.7 cells was able to stimulate growth in MEF1F2 and NIH3T3 mouse fibroblast cell lines. We identified five secreted and LPS-induced chemokines, CCL2, CCL5, CCL12, CxCL2, and CxCL10, by microarray analysis and tested their stimulatory activity. We used commercially available bacterially expressed proteins, and found only CCL12, CxCL2 and CxCL10 stimulated growth in MEF1F2 and NIH3T3 cells. The saturation density of the cells was also increased. They were not able to stimulate growth in v-Src transformed MEF1F2 or SWAP-70 transformed NIH3T3 cells. We examined signaling pathways activated by these three factors. We found that ERK and p38 MAP kinase were activated and were required for the activity to stimulate the cell growth. Other pathways including phosophatidylinositol-3 kinase (PI3K), NFκB pathways were not activated. These results suggest that Raw264.7 cells secretes growth stimulation factors for fibroblasts when differentiated to macrophages implicating that fast growth of them is related to inflamation although the reason is still unclear.