Objectives Endothelial senescence has been proposed to be involved in endothelial dysfunction and atherogenesis. This study investigates the effects of ginsenoside Rbl, a major constituent of ginseng,on H<sub>2&...Objectives Endothelial senescence has been proposed to be involved in endothelial dysfunction and atherogenesis. This study investigates the effects of ginsenoside Rbl, a major constituent of ginseng,on H<sub>2</sub>O<sub>2</sub>-induced endothelial senescence.Methods Primary human umbilical vein endothelial cells(HUVECs) senescence was induced by H<sub>2</sub>O<sub>2</sub> as judged by senescence-associated P-galactosidase assay (SA-P-gal).Fntracellur superoxide dismutase(S0D1) activity and malondialdehyde(MDA) level were determined by commercial kit.S0D1 mRNA and protein expression were analyzed by real time PCR and Western blot.Reactive oxygen species(ROS) were determined by flow cytometry.Results Rb1 was found to reverse endothelial senescence,as witnessed by a significant decrease of senescent cell numbers. Rbl could markedly increase intracellular SOD activity, decrease the MDA level,and suppress the generation of intracellular ROS in H<sub>2</sub>O<sub>2</sub>-treated HUVECs.Consistent with these findings,Rbl can effectively restore SOD1 mRNA and protein expression which decreased in H<sub>2</sub>O<sub>2</sub> treated cells. Conclusions Our report demonstrates thatRbl can exert reversal effects on H<sub>2</sub>O<sub>2</sub>-induced cellular senescence through modulating cellular redox status.展开更多
This study aims to observe the protective effects of ginsenoside Rbl on liver and lung in rats with septic shock and reveal its mechanism. Rats were randomly divided into three groups: sham, cecal ligation and punctu...This study aims to observe the protective effects of ginsenoside Rbl on liver and lung in rats with septic shock and reveal its mechanism. Rats were randomly divided into three groups: sham, cecal ligation and puncture (CLP), and CLP with ginsenoside Rb1. Then, the survival rate, arterial blood pressure, TLR4 mRNA, and TNF-α levels were determined. The liver and lung tissues were stained with hematoxylin-eosin (HE). The overall survival rate of the Rb1 group was significantly higher than that of the CLP group. Mean arterial blood pressure went down in both the CLP and Rb1 groups after CLP, and there was a significant difference both in the sham and Rb1 groups when compared with the CLP group. The Rb1 treatment group had markedly lower TLR4 mRNA expression and TNF-a levels than the CLP group. In the CLP group, pathology showed swelling, degeneration, necrosis, and neutrophii infiltration in the liver and alveolar epithelial cells. However, in the Rb1 group, there was mild degeneration and slight neutrophil infiltration, but no obvious necrosis. Rb1 may improve the survival rate, ameliorate arterial blood pressure, and protect the liver and lung in septic shock rats by downregulating the expression of TLR4 mRNA and inhibiting the production of TNF-α.展开更多
文摘Objectives Endothelial senescence has been proposed to be involved in endothelial dysfunction and atherogenesis. This study investigates the effects of ginsenoside Rbl, a major constituent of ginseng,on H<sub>2</sub>O<sub>2</sub>-induced endothelial senescence.Methods Primary human umbilical vein endothelial cells(HUVECs) senescence was induced by H<sub>2</sub>O<sub>2</sub> as judged by senescence-associated P-galactosidase assay (SA-P-gal).Fntracellur superoxide dismutase(S0D1) activity and malondialdehyde(MDA) level were determined by commercial kit.S0D1 mRNA and protein expression were analyzed by real time PCR and Western blot.Reactive oxygen species(ROS) were determined by flow cytometry.Results Rb1 was found to reverse endothelial senescence,as witnessed by a significant decrease of senescent cell numbers. Rbl could markedly increase intracellular SOD activity, decrease the MDA level,and suppress the generation of intracellular ROS in H<sub>2</sub>O<sub>2</sub>-treated HUVECs.Consistent with these findings,Rbl can effectively restore SOD1 mRNA and protein expression which decreased in H<sub>2</sub>O<sub>2</sub> treated cells. Conclusions Our report demonstrates thatRbl can exert reversal effects on H<sub>2</sub>O<sub>2</sub>-induced cellular senescence through modulating cellular redox status.
基金supported by the Major Invite Tender Project of Health Department of Jiangxi Province(No.20104005)the Major Project of the Department of Education of Jiangxi Province(No.GJJ12003)the 13th’Challenge Cup’of Extracurricular academic and scientific works of Nanchang University
文摘This study aims to observe the protective effects of ginsenoside Rbl on liver and lung in rats with septic shock and reveal its mechanism. Rats were randomly divided into three groups: sham, cecal ligation and puncture (CLP), and CLP with ginsenoside Rb1. Then, the survival rate, arterial blood pressure, TLR4 mRNA, and TNF-α levels were determined. The liver and lung tissues were stained with hematoxylin-eosin (HE). The overall survival rate of the Rb1 group was significantly higher than that of the CLP group. Mean arterial blood pressure went down in both the CLP and Rb1 groups after CLP, and there was a significant difference both in the sham and Rb1 groups when compared with the CLP group. The Rb1 treatment group had markedly lower TLR4 mRNA expression and TNF-a levels than the CLP group. In the CLP group, pathology showed swelling, degeneration, necrosis, and neutrophii infiltration in the liver and alveolar epithelial cells. However, in the Rb1 group, there was mild degeneration and slight neutrophil infiltration, but no obvious necrosis. Rb1 may improve the survival rate, ameliorate arterial blood pressure, and protect the liver and lung in septic shock rats by downregulating the expression of TLR4 mRNA and inhibiting the production of TNF-α.