In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for i...In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for implementing the proposed equivalent damping ratio model for use in seismic damage evaluation is presented.To this end,Ibarra’s peak-oriented model,which incorporates an energy-based degradation rule,is selected for representing hysteretic behavior of RC structure,and the optimized equivalent damping for predicting the maximum displacement response is presented by using the empirical method,in which the effect of cyclic degradation is considered.Moreover,the relationship between the hysteretic energy dissipation of the inelastic system and the elastic strain energy of the equivalent linear system is established so that the proposed equivalent linear system can be directly integrated with the Park-Ang seismic model to implement seismic damage evaluation.Due to the simplicity of the equivalent linearization method,the proposed method provides an efficient and reliable way of obtaining comprehensive insight into the seismic performance of RC structures.The verification demonstrates the validity of the proposed method.展开更多
According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification in...According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification intensities (SFIs) (SFI=6 to 8.5) and different seismic design categories (SDCs) (SDC=B and C). The collapse resistance of the frames with SDC=B and C in terms of collapse fragility curves are quantitatively evaluated and compared via incremental dynamic analysis (IDA). The results show that the collapse resistance of structures should be evaluated based on both the absolute seismic resistance and the corresponding design seismic intensity. For the frames with SFI from 6 to 7.5, because they have relatively low absolute seismic resistance, their collapse resistance is insufficient even when their corresponding SDCs are upgraded from B to C. Thus, further measures are needed to enhance these structures, and some suggestions are proposed.展开更多
An analytical model for predicting the corrosion-induced cracking of concrete cover of reinforced concrete(RC) structures was developed.The effects of influence factors such as practical initial defects,corrosion rate...An analytical model for predicting the corrosion-induced cracking of concrete cover of reinforced concrete(RC) structures was developed.The effects of influence factors such as practical initial defects,corrosion rate,strength and elastic modulus of concrete on the corrosion-induced cracking of concrete cover were investigated.It was found that the size of practical initial defects was the most effective factor.Therefore,improving the compactness of concrete is an effective way to improve the durability of RC structures.It was also demonstrated that the accelerated corrosion tests may be unfavorable in the study of the relationship between cracking time and crack width.展开更多
A nonlinear damage model based on the combination of deformation and hysteretic energy and its validation with experiments are presented.Also,a combination parameter is defined to consider the mutual effect of deforma...A nonlinear damage model based on the combination of deformation and hysteretic energy and its validation with experiments are presented.Also,a combination parameter is defined to consider the mutual effect of deformation and hysteretic energy for different types of components in different loading stages.Four reinforced concrete (RC) columns are simulated and analyzed using the nonlinear damage model.The results indicate that the damage evolution evaluated by the model agrees well with the experimental phenomenon.Furthermore,the seismic damage evolution of a six-story RC frame was analyzed,revealing four typical failure modes according to the interstory drift distribution of the structure;the damage values calculated using the nonlinear damage model agree well with the four typical failure modes.展开更多
A three dimensional finite element of nonlinear pushover analysis for short span Reinforced Concrete (RC) bridge with circular piers cross section is modeling to present effects of soil structural interaction (SSI). S...A three dimensional finite element of nonlinear pushover analysis for short span Reinforced Concrete (RC) bridge with circular piers cross section is modeling to present effects of soil structural interaction (SSI). Structural elements models are including linear foundation springs modeling, and nonlinear RC piers modeling. The paper succeeded to present the SSI effects of nonlinear pushover analysis of short spans RC bridges to determine the significant effects on dynamic characteristics and displacement capacity of short span RC bridges performance;that is increasing within range 11% to 20% compared to baseline pushover analysis of bridge without SSI effects. Results show the bridge stiffness decreases due to SSI effects on the bridge support for more flexible soils types that generates large displacement, with corresponding less base shear in bridge piers and footings by average percentage 12% and 18%, which is important for structural evaluation for new bridge construction and also, for strengthening and repair works evaluation of existing bridges.展开更多
Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws...Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simulation;both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε law. 2. A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames;it has been compared with test results and describes, in a simple way, the formation of plastic hinges. 3. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dynamic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of preventing, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead to a global instability of the RC column. 4. The proposed truss model is statically indeterminate, so it exhibits some features, which are not met by the “strut-and-tie” model.展开更多
基金National Natural Science Foundation of China under Grant No.51978125Open Fund Project of Research Center for Geotechnical and Structural Engineering Technology of Liaoning Province under Grant No.DLSZD2023[007]。
文摘In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for implementing the proposed equivalent damping ratio model for use in seismic damage evaluation is presented.To this end,Ibarra’s peak-oriented model,which incorporates an energy-based degradation rule,is selected for representing hysteretic behavior of RC structure,and the optimized equivalent damping for predicting the maximum displacement response is presented by using the empirical method,in which the effect of cyclic degradation is considered.Moreover,the relationship between the hysteretic energy dissipation of the inelastic system and the elastic strain energy of the equivalent linear system is established so that the proposed equivalent linear system can be directly integrated with the Park-Ang seismic model to implement seismic damage evaluation.Due to the simplicity of the equivalent linearization method,the proposed method provides an efficient and reliable way of obtaining comprehensive insight into the seismic performance of RC structures.The verification demonstrates the validity of the proposed method.
基金National Science Foundation of China Under Grant No.90815025&51178249the National Key Technologies R&D Program Under Grant No.2009BAJ28B01&2006BAJ03A02-01+1 种基金Tsinghua University Research Funds No.2010THZ02-1the Program for New Century Excellent Talents in University
文摘According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification intensities (SFIs) (SFI=6 to 8.5) and different seismic design categories (SDCs) (SDC=B and C). The collapse resistance of the frames with SDC=B and C in terms of collapse fragility curves are quantitatively evaluated and compared via incremental dynamic analysis (IDA). The results show that the collapse resistance of structures should be evaluated based on both the absolute seismic resistance and the corresponding design seismic intensity. For the frames with SFI from 6 to 7.5, because they have relatively low absolute seismic resistance, their collapse resistance is insufficient even when their corresponding SDCs are upgraded from B to C. Thus, further measures are needed to enhance these structures, and some suggestions are proposed.
基金Supported by National Natural Science Foundation of China (No. 50908148)Natural Science Foundation for Team Project of Guangdong Province(No. 9351806001000001)+1 种基金Scientific Research Foundation for Returned Overseas Chinese Scholars,Ministry of Education(41 Batch)Open Fund of State Key Laboratory of Coastal and Of fshore Engineering of Dalian University of Technology (No. LP1111)
文摘An analytical model for predicting the corrosion-induced cracking of concrete cover of reinforced concrete(RC) structures was developed.The effects of influence factors such as practical initial defects,corrosion rate,strength and elastic modulus of concrete on the corrosion-induced cracking of concrete cover were investigated.It was found that the size of practical initial defects was the most effective factor.Therefore,improving the compactness of concrete is an effective way to improve the durability of RC structures.It was also demonstrated that the accelerated corrosion tests may be unfavorable in the study of the relationship between cracking time and crack width.
基金the National Natural Science Foundation of China(Grant 51578058)the Beijing Natural Science Foundation(Grant 8172038).
文摘A nonlinear damage model based on the combination of deformation and hysteretic energy and its validation with experiments are presented.Also,a combination parameter is defined to consider the mutual effect of deformation and hysteretic energy for different types of components in different loading stages.Four reinforced concrete (RC) columns are simulated and analyzed using the nonlinear damage model.The results indicate that the damage evolution evaluated by the model agrees well with the experimental phenomenon.Furthermore,the seismic damage evolution of a six-story RC frame was analyzed,revealing four typical failure modes according to the interstory drift distribution of the structure;the damage values calculated using the nonlinear damage model agree well with the four typical failure modes.
文摘A three dimensional finite element of nonlinear pushover analysis for short span Reinforced Concrete (RC) bridge with circular piers cross section is modeling to present effects of soil structural interaction (SSI). Structural elements models are including linear foundation springs modeling, and nonlinear RC piers modeling. The paper succeeded to present the SSI effects of nonlinear pushover analysis of short spans RC bridges to determine the significant effects on dynamic characteristics and displacement capacity of short span RC bridges performance;that is increasing within range 11% to 20% compared to baseline pushover analysis of bridge without SSI effects. Results show the bridge stiffness decreases due to SSI effects on the bridge support for more flexible soils types that generates large displacement, with corresponding less base shear in bridge piers and footings by average percentage 12% and 18%, which is important for structural evaluation for new bridge construction and also, for strengthening and repair works evaluation of existing bridges.
文摘Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simulation;both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε law. 2. A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames;it has been compared with test results and describes, in a simple way, the formation of plastic hinges. 3. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dynamic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of preventing, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead to a global instability of the RC column. 4. The proposed truss model is statically indeterminate, so it exhibits some features, which are not met by the “strut-and-tie” model.