The performance of different nonlinear modelling strategies to simulate the response of RC columns subjected to axial load combined with cyclic biaxial horizontal loading is compared. The models studied are classified...The performance of different nonlinear modelling strategies to simulate the response of RC columns subjected to axial load combined with cyclic biaxial horizontal loading is compared. The models studied are classified into two categories according to the nonlinearity distribution assumed in the elements: lumped-plasticity and distributed inelasticity. For this study, results of tests on 24 columns subjected to cyclic uniaxial and biaxial lateral displacements were numerically reproduced. The analyses show that the global envelope response is satisfactorily represented with the three modelling strategies, but significant differences were found in the strength degradation for higher drift demands and energy dissipation.展开更多
Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock se...Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock security.In this study,the dynamic response and damage model of circular RC columns subjected to underwater explosions were investigated by means of scaled-down experiment models.Experiments were carried out in a 10.0 m diameter tank with the water depth of 2.25 m,under different explosive quantities(0.025 kg-1.6 kg),stand-off distances(0.0 m-7.0 m),and detonation depths(0.25 m-2.0 m).The shock wave load and dynamic response of experiment models were measured by configuring sensors of pressure,acceleration,strain,and displacement.Then,the load distribution characteristics,time history of test data,and damage models related to present conditions were obtained and discussed.Three damage models,including bending failure,bending-shear failure and punching failure,were identified.In addition,the experie nce model of shock wave loads on the surface of a RC column was proposed for engineering application.展开更多
Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the lo...Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the longitudinal reinforcement characteristic value are the three main parameters that can influence the neutral axis depth when concrete compression strain reaches an ultimate value. The formula for computing the central angle θ, corresponding to the compression zone, is established according to the data regression of the numerical analysis results. The numerical analysis results demonstrate that the concrete stress enhancement from transverse confinement and strain hardening of the longitudinal reinforcement can cause a much greater flexural strength than that defined by the design code. Based on the analytical studies and the test results of 36 large scale columns, the formula to calculate the flexural strength when columns fail under seismic loading is proposed, and the calculated results agree well with the test results. Finally, parametric studies are conducted on a typical column with different axial load ratios, longitudinal reinforcement characteristic value and FRP confinement ratios. Analysis of the results shows that the calculated flexural strength can be increased by 50% compared to that of unconfined columns defined by the code.展开更多
In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composit...In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composites (ECC) to form ECC/RC composite columns. Based on the existing material properties, the mechanical behaviors of the ECC columns, ECC/RC composite columns and RC columns were numerically studied under combined vertical and horizontal loading with the software of ATENA. Then, the failure mechanism of ECC columns and ECC/RC composite columns were comprehensively studied and compared with that of the RC columns. Then, the effects of the height of the ECC, the axial compression ratio, and the transverse reinforcement ratio on the mechanical behaviors of the composite or the ECC column are studied. The calculation results show that the ultimate load capacity, ductility and crack resistance of the ECC or ECC/RC composite columns are superior to those of the RC columns. The ECC/RC composite column with a height of the ECC layer of 1.2h ( h is the height of the cross section) can achieve similar mechanical properties of a full ECC column. With high shear strength, ECC can undertake the shear force and significantly reduce the amount of stirrups, avoiding construction issues and promoting its engineering application.展开更多
To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite col...To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite columns. The mechanical behaviors of the ECC/RC composite columns are numerically studied under low-cyclic loading with the finite element analysis softwareof MSC. MARC. It is found that the ECC/RC composite columns can significantly enhance the load capacity, the ductility ad energy dissipation of columns. Then, the effects of the height of the ECC, the axial compression ratio and the longitudinal reinforcement ratio on the seismic behaviors of the composite columns are parametrically studied. The results show that the ECC/RC composite column with a height of the ECC layer of 0. Sh(h is the height to the cross-section) can achieve similar seismic performance of a full ECC column. The peak load of the composite column increases significantly while the ductility decreases with the increase of the axial compression ratio. Increasing the longitudinal reinforcement ratio within a certain range can improve the ductility and energy dissipation capacity and almost has no effect on load capacity. The aalysis results ae instructive and valuable for reference in designing ECC structures.展开更多
Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation....Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a new retrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, was developed aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. Carbon FRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examine the function of this new method for improving the ductility of columns. Responses of columns were examined before and after being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismic behavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column.展开更多
The behavior of slender columns under the effect of eccentric loading has always taken the attention of researchers. When investigating the strengthening of reinforced concrete columns, mainly short and circular colum...The behavior of slender columns under the effect of eccentric loading has always taken the attention of researchers. When investigating the strengthening of reinforced concrete columns, mainly short and circular columns are the targeted elements. This is why the data about slender columns with rectangular sections is limited and infrequent specially when loaded eccentrically. This paper aims to increase the available experimental data in this specific area. The experimental program consisted of twenty seven specimens. The specimens were divided into three groups; one control group and two groups strengthened using two strengthening schemes. Scheme 1 implied the use of near surface mounted (NSM) longitudinal steel bars, while in scheme 2, NSM longitudinal steel bars partially wrapped with one ply of carbon fibers reinforced polymers (CFRP) sheets was used. The test specimen had an overall length of 2000 mm and a 100 x 200 mm rectangular cross section. In addition to the strengthening schemes, the test parameters included three ratios for the internal longitudinal steel bars "μ" 1%, 1.57% and 2.26%. The parameters were extended to cover three stirrups' volumetric ratio "ρv" 0.73%, 0.49% and 0.37%. The specimens were tested under the effect of eccentric loading with eccentricity-to-section height e/h equals 0.25. The research revealed that the strength gain in specimens strengthened with scheme 2 was higher than with scheme 1. Analytical modeling of the stress strain relation of the strengthened RC columns considering the effect of strengthening scheme, internal reinforcement ratio μ, and stirrups' volumetric ratio "ρv" was proposed. Verification was made using available experimental data. The proposed model showed a reasonable agreement with the experimental results.展开更多
For a building structure subjected to impulsive loading, particularly shock and impact loading , the response of the critical columns is crucial to the behaviour of the entire system during and after the blast loading...For a building structure subjected to impulsive loading, particularly shock and impact loading , the response of the critical columns is crucial to the behaviour of the entire system during and after the blast loading phase. Therefore, an appropriate evaluation of the column response and damage under short-duration impulsive loading is important in a comprehensive assessment of the performance of a building system. This paper reports a dynamic analysis approach for the response of RC columns subjected to impulsive loading. Considering that the dynamic response of a column in a frame structure can also be affected by the floor movement which relates to the global vibration of the frame system, a generic column-mass model is used, in which a concentrated mass is attached to the column top to simulate the effect of a global vibration. To take into account the high shear effect under impulsive load, the model is formulated using Timoshenko beam theory, and three main nonlinear mechanisms are considered. Two typical scenarios, one under a direct air blast loading, and another under a blast-induced ground excitation, are analyzed and the primary response features are highlighted.展开更多
In order to evaluate the seismic behavior of confined RC column-composite beam joints, five interior joints were tested under low cyclic reversed load. The weakening extent of flanges, the number of studs, and whether...In order to evaluate the seismic behavior of confined RC column-composite beam joints, five interior joints were tested under low cyclic reversed load. The weakening extent of flanges, the number of studs, and whether to reinforce weakened flanges were used as parameters in designing these five joints. Failure characteristics, hysteretic curves, skeleton curves, ductility, energy dissipation, strength degradation, and stiffness degradation were analyzed. The test results revealed that the steel beam flanges in the joints were equivalent to the tie rod. Weakened flanges resulted in poor seismic behavior; however, the seismic behavior could be improved by increasing studs and reinforcing weakened flanges. The joint steel plate hoops, equivalent to stirrups, did not yield when the maximum load was reached, but yielded when the failure load was reached for the joints with shear failure. Increasing stud-type joints and reinforcing flange-type joints ensured good seismic behavior and met project requirements. Based on the experimental results, the failure mechanism of the joints was discussed, and the shear capacity equations of the joints was presented.展开更多
Spatial structures such as a gymnasium and an exhibition hall often use ceilings because of enhancing sound effects and reducing heating bills. Although the ceiling members fell down on a large scale due to the seismi...Spatial structures such as a gymnasium and an exhibition hall often use ceilings because of enhancing sound effects and reducing heating bills. Although the ceiling members fell down on a large scale due to the seismic motion according to the past great earthquake disaster reports, structural engineers particularly do not carry out the seismic design. The study gives structural engineers the equivalent static loads for the design of the earthquake-proof design of the ceiling system. In particular, it is significant to investigate the dynamic behavior and the applied seismic loads for the complicated vibration of the long span arch building structures with RC columns.展开更多
In recent decades,the increase in terrorist attacks highlights the necessity and importance of understanding of structural performance under accidental and intentionally malicious blast loads.As an important part of t...In recent decades,the increase in terrorist attacks highlights the necessity and importance of understanding of structural performance under accidental and intentionally malicious blast loads.As an important part of transportation infrastructure,bridges would inevitably suffer explosion hazards especially close-in explosion.Reinforced concrete(RC)bridge column is the most critical components of bridge structures,which is more prone to severe local damage under the action of close-in blast loading and can lead to progressive collapse with catastrophic consequences in most cases.Therefore,the blast performance of RC bridge columns under close-in explosions is of particular concern.Towards a better RC bridge column protection against close-in blast loadings,efforts have been mainly devoted to understanding dynamic response predictions of RC columns,numerical simulation techniques of close-in explosion and damage assessment of blast-damaged RC columns.This article presents a state-of-the-art review of the research status of RC columns subjected to close-in blast loads.The blast loading,experimental study and failure mode,uncoupled and coupled simulation method,damage assessment based on residual axial capacity,vulnerability analysis and machine learning are considered and reviewed.The merits and defects of the existing approaches are discussed,and some suggestions for possible improvement are proposed.Further investigation into the future development of this topic has also been identified.展开更多
It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of...It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of building structures against multi-hazard is becoming more and more obvious.Therefore,the damage analysis of building structures under the combined action of multiple hazards has become a very urgent requirement for disaster prevention and reduction.In this paper,the refined finite element model of reinforced concrete(RC)columns is established by using the explicit dynamic analysis software LS-DYNA.Combined with the Monte Carlo method,the damage law of RC columns under the combined action of random single earthquake or explosion disaster and multi-hazard is studied,and the damage groups are distinguished according to the damage index.Based on the support vector machine(SVM)algorithm,the dividing line between different damage degree groups is determined,and a rapid method for determining the damage degree of RC columns under the combined seismic and blast loads is proposed.Finally,suggestions for the design of RC column against multi-disaster are put forward.展开更多
The effects of length and location of the steel corrosion on the structural behavior and load capacity of reinforced concrete (RC) columns have been investigated. Results of the accelerated corrosion process and eccen...The effects of length and location of the steel corrosion on the structural behavior and load capacity of reinforced concrete (RC) columns have been investigated. Results of the accelerated corrosion process and eccentric load test are presented in detail. Effects of the location of the partial length, the corrosion level within partial length and the asymmetrical deterioration of the concrete section on the mechanical behavior and load capacity of corroded RC columns are discussed. It is found that the mechanical behavior and load carrying capacity of corroded RC columns are simultaneously affected by the above mentioned factors. For the corroded RC columns with large eccentricity, a higher corrosion level in the tensile corroded length and a greater asymmetrical deterioration of the concrete section can result in less ductile behavior and larger load reduction of the column; while for the corroded RC columns with small eccentricity, the less ductile behavior and the larger load reduction of the column may result from the higher corrosion level in the compressive corroded length and the greater asymmetrical deterioration of the concrete展开更多
Reinforced concretes(RC)have been widely used in constructions.In construction,one of the eritical elements carrying a high percentage of the weight is columns which were not used 1o design to absorb large dynamic loa...Reinforced concretes(RC)have been widely used in constructions.In construction,one of the eritical elements carrying a high percentage of the weight is columns which were not used 1o design to absorb large dynamic load like surface bursts.This study focuses on investigating blast load parameters to design of RC columns to withstand blast detonation.The numerical model is based on finite element amalysis using LS-DYNA.Numerical results are validated against blast feld tests available in the lterature.Couples of simulations are performed with changing blast parameters to.study efects of various scaled distances on the nonlinear bchavior of RC columns.According to simulation results,the scaled distance has a substantial infuence on the blast response of RC columns.With lower scaled distance,higher peak pressure and larger pressure impulse are applied on the RC column.Eventually,keeping the scaled disance unchanged,increasing the charge weight or shorter standoff distance cause more damage to the RC column.Intensive studies are carried out to investigate the efects of scaled distance and charge weight on the damage degree and residual axial load carrying capacity of RC columns with various column width,longitudinal reinforcement ratio and concrete strength.Results of this research will be used to asessmsent the efet of an explosion on the dynamic behavior of RC columns.展开更多
The popularity of online home design and floor plan customization has been steadily increasing. However, the manual conversion of floor plan images from books or paper materials into electronic resources can be a chal...The popularity of online home design and floor plan customization has been steadily increasing. However, the manual conversion of floor plan images from books or paper materials into electronic resources can be a challenging task due to the vast amount of historical data available. By leveraging neural networks to identify and parse floor plans, the process of converting these images into electronic materials can be significantly streamlined. In this paper, we present a novel learning framework for automatically parsing floor plan images. Our key insight is that the room type text is very common and crucial in floor plan images as it identifies the important semantic information of the corresponding room. However, this clue is rarely considered in previous learning-based methods. In contrast, we propose the Row and Column network (RC-Net) for recognizing floor plan elements by integrating the text feature. Specifically, we add the text feature branch in the network to extract text features corresponding to the room type for the guidance of room type predictions. More importantly, we formulate the Row and Column constraint module (RC constraint module) to share and constrain features across the entire row and column of the feature maps to ensure that only one type is predicted in each room as much as possible, making the segmentation boundaries between different rooms more regular and cleaner. Extensive experiments on three benchmark datasets validate that our framework substantially outperforms other state-of-the-art approaches in terms of the metrics of FWIoU, mACC and mIoU.展开更多
Additional hysteretic experiments for corroded rectangular reinforced concrete(RC)columns with an axial load ratio of 0.27 were implemented.A quasi-static cyclic lateral loading with constant axial force was subjected...Additional hysteretic experiments for corroded rectangular reinforced concrete(RC)columns with an axial load ratio of 0.27 were implemented.A quasi-static cyclic lateral loading with constant axial force was subjected to tests.Herein,a modified ductility factor model for corroded RC column is developed on the basis of the previous work and additional experiments.The model involves the influence of both the corrosion ratio of longitudinal rebar and the axial load ratio.A four-linear envelope curve model concerning lateral load and displacement is proposed in a combination of determination rules of the peak point and the failure strength point.The hysteretic model of corroded RC columns is developed by considering both degraded unloading stiffness and reloading stiffness on the history peak point.The hysteretic model can predict the residual life of corroded RC columns under seismic loading.展开更多
基金Financial support provided by "FCT - Fundao para a Ciência e Tecnologia,"Portugal,through the research project PTDC/ECM/102221/2008
文摘The performance of different nonlinear modelling strategies to simulate the response of RC columns subjected to axial load combined with cyclic biaxial horizontal loading is compared. The models studied are classified into two categories according to the nonlinearity distribution assumed in the elements: lumped-plasticity and distributed inelasticity. For this study, results of tests on 24 columns subjected to cyclic uniaxial and biaxial lateral displacements were numerically reproduced. The analyses show that the global envelope response is satisfactorily represented with the three modelling strategies, but significant differences were found in the strength degradation for higher drift demands and energy dissipation.
基金funded by the National Natural Science Foundation of China(Grant Nos.51578543)。
文摘Reinforced concrete(RC) columns are widely used as supporting structures for high-piled wharfs.The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharfs antiknock security.In this study,the dynamic response and damage model of circular RC columns subjected to underwater explosions were investigated by means of scaled-down experiment models.Experiments were carried out in a 10.0 m diameter tank with the water depth of 2.25 m,under different explosive quantities(0.025 kg-1.6 kg),stand-off distances(0.0 m-7.0 m),and detonation depths(0.25 m-2.0 m).The shock wave load and dynamic response of experiment models were measured by configuring sensors of pressure,acceleration,strain,and displacement.Then,the load distribution characteristics,time history of test data,and damage models related to present conditions were obtained and discussed.Three damage models,including bending failure,bending-shear failure and punching failure,were identified.In addition,the experie nce model of shock wave loads on the surface of a RC column was proposed for engineering application.
基金The National Basic Research Program of China (973 Program)(No.2007CB714200)the National Natural Science Foundationof China (No.50608015,50908102)
文摘Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the longitudinal reinforcement characteristic value are the three main parameters that can influence the neutral axis depth when concrete compression strain reaches an ultimate value. The formula for computing the central angle θ, corresponding to the compression zone, is established according to the data regression of the numerical analysis results. The numerical analysis results demonstrate that the concrete stress enhancement from transverse confinement and strain hardening of the longitudinal reinforcement can cause a much greater flexural strength than that defined by the design code. Based on the analytical studies and the test results of 36 large scale columns, the formula to calculate the flexural strength when columns fail under seismic loading is proposed, and the calculated results agree well with the test results. Finally, parametric studies are conducted on a typical column with different axial load ratios, longitudinal reinforcement characteristic value and FRP confinement ratios. Analysis of the results shows that the calculated flexural strength can be increased by 50% compared to that of unconfined columns defined by the code.
基金The National Natural Science Foundation of China(No.51278118)the Natural Science Foundation of Jiangsu Province(No.BK2012756)the Key Project of Ministry of Education of China(No.113029A)
文摘In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composites (ECC) to form ECC/RC composite columns. Based on the existing material properties, the mechanical behaviors of the ECC columns, ECC/RC composite columns and RC columns were numerically studied under combined vertical and horizontal loading with the software of ATENA. Then, the failure mechanism of ECC columns and ECC/RC composite columns were comprehensively studied and compared with that of the RC columns. Then, the effects of the height of the ECC, the axial compression ratio, and the transverse reinforcement ratio on the mechanical behaviors of the composite or the ECC column are studied. The calculation results show that the ultimate load capacity, ductility and crack resistance of the ECC or ECC/RC composite columns are superior to those of the RC columns. The ECC/RC composite column with a height of the ECC layer of 1.2h ( h is the height of the cross section) can achieve similar mechanical properties of a full ECC column. With high shear strength, ECC can undertake the shear force and significantly reduce the amount of stirrups, avoiding construction issues and promoting its engineering application.
基金The National Natural Science Foundation of China(No.51278118)the Natural Science Foundation of Jiangsu Province(No.BK2012756)+1 种基金the Key Project of Ministry of Education of China(No.113029A)the Third Five-Year Major Scientific and Technological Project of China Metallurgical Group Corporation
文摘To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite columns. The mechanical behaviors of the ECC/RC composite columns are numerically studied under low-cyclic loading with the finite element analysis softwareof MSC. MARC. It is found that the ECC/RC composite columns can significantly enhance the load capacity, the ductility ad energy dissipation of columns. Then, the effects of the height of the ECC, the axial compression ratio and the longitudinal reinforcement ratio on the seismic behaviors of the composite columns are parametrically studied. The results show that the ECC/RC composite column with a height of the ECC layer of 0. Sh(h is the height to the cross-section) can achieve similar seismic performance of a full ECC column. The peak load of the composite column increases significantly while the ductility decreases with the increase of the axial compression ratio. Increasing the longitudinal reinforcement ratio within a certain range can improve the ductility and energy dissipation capacity and almost has no effect on load capacity. The aalysis results ae instructive and valuable for reference in designing ECC structures.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.07QA14025).Acknowledgment The authors thank Dr. WU Yu-fei, the assistant professor of the City University of Hong Kong for providing good suggestion and help during the test. This research was also supported by the grant from the Research Grant Council of the Hong Kong Special Administrative Region (Grant No.Cityu1113/04E).
文摘Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a new retrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, was developed aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. Carbon FRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examine the function of this new method for improving the ductility of columns. Responses of columns were examined before and after being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismic behavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column.
文摘The behavior of slender columns under the effect of eccentric loading has always taken the attention of researchers. When investigating the strengthening of reinforced concrete columns, mainly short and circular columns are the targeted elements. This is why the data about slender columns with rectangular sections is limited and infrequent specially when loaded eccentrically. This paper aims to increase the available experimental data in this specific area. The experimental program consisted of twenty seven specimens. The specimens were divided into three groups; one control group and two groups strengthened using two strengthening schemes. Scheme 1 implied the use of near surface mounted (NSM) longitudinal steel bars, while in scheme 2, NSM longitudinal steel bars partially wrapped with one ply of carbon fibers reinforced polymers (CFRP) sheets was used. The test specimen had an overall length of 2000 mm and a 100 x 200 mm rectangular cross section. In addition to the strengthening schemes, the test parameters included three ratios for the internal longitudinal steel bars "μ" 1%, 1.57% and 2.26%. The parameters were extended to cover three stirrups' volumetric ratio "ρv" 0.73%, 0.49% and 0.37%. The specimens were tested under the effect of eccentric loading with eccentricity-to-section height e/h equals 0.25. The research revealed that the strength gain in specimens strengthened with scheme 2 was higher than with scheme 1. Analytical modeling of the stress strain relation of the strengthened RC columns considering the effect of strengthening scheme, internal reinforcement ratio μ, and stirrups' volumetric ratio "ρv" was proposed. Verification was made using available experimental data. The proposed model showed a reasonable agreement with the experimental results.
文摘For a building structure subjected to impulsive loading, particularly shock and impact loading , the response of the critical columns is crucial to the behaviour of the entire system during and after the blast loading phase. Therefore, an appropriate evaluation of the column response and damage under short-duration impulsive loading is important in a comprehensive assessment of the performance of a building system. This paper reports a dynamic analysis approach for the response of RC columns subjected to impulsive loading. Considering that the dynamic response of a column in a frame structure can also be affected by the floor movement which relates to the global vibration of the frame system, a generic column-mass model is used, in which a concentrated mass is attached to the column top to simulate the effect of a global vibration. To take into account the high shear effect under impulsive load, the model is formulated using Timoshenko beam theory, and three main nonlinear mechanisms are considered. Two typical scenarios, one under a direct air blast loading, and another under a blast-induced ground excitation, are analyzed and the primary response features are highlighted.
基金Supported by the National Natural Science Foundation of China(No.51209094)
文摘In order to evaluate the seismic behavior of confined RC column-composite beam joints, five interior joints were tested under low cyclic reversed load. The weakening extent of flanges, the number of studs, and whether to reinforce weakened flanges were used as parameters in designing these five joints. Failure characteristics, hysteretic curves, skeleton curves, ductility, energy dissipation, strength degradation, and stiffness degradation were analyzed. The test results revealed that the steel beam flanges in the joints were equivalent to the tie rod. Weakened flanges resulted in poor seismic behavior; however, the seismic behavior could be improved by increasing studs and reinforcing weakened flanges. The joint steel plate hoops, equivalent to stirrups, did not yield when the maximum load was reached, but yielded when the failure load was reached for the joints with shear failure. Increasing stud-type joints and reinforcing flange-type joints ensured good seismic behavior and met project requirements. Based on the experimental results, the failure mechanism of the joints was discussed, and the shear capacity equations of the joints was presented.
文摘Spatial structures such as a gymnasium and an exhibition hall often use ceilings because of enhancing sound effects and reducing heating bills. Although the ceiling members fell down on a large scale due to the seismic motion according to the past great earthquake disaster reports, structural engineers particularly do not carry out the seismic design. The study gives structural engineers the equivalent static loads for the design of the earthquake-proof design of the ceiling system. In particular, it is significant to investigate the dynamic behavior and the applied seismic loads for the complicated vibration of the long span arch building structures with RC columns.
基金financial support provided by the National Natural Science Foundation of China(Grant Nos.52008031,52178462,52208469)the financial supports from National Key Research and Development Program of China(Grant No.2021YFC3100700)Fundamental Research Funds for the Central Universities,CHD(Grant No.300102213201)。
文摘In recent decades,the increase in terrorist attacks highlights the necessity and importance of understanding of structural performance under accidental and intentionally malicious blast loads.As an important part of transportation infrastructure,bridges would inevitably suffer explosion hazards especially close-in explosion.Reinforced concrete(RC)bridge column is the most critical components of bridge structures,which is more prone to severe local damage under the action of close-in blast loading and can lead to progressive collapse with catastrophic consequences in most cases.Therefore,the blast performance of RC bridge columns under close-in explosions is of particular concern.Towards a better RC bridge column protection against close-in blast loadings,efforts have been mainly devoted to understanding dynamic response predictions of RC columns,numerical simulation techniques of close-in explosion and damage assessment of blast-damaged RC columns.This article presents a state-of-the-art review of the research status of RC columns subjected to close-in blast loads.The blast loading,experimental study and failure mode,uncoupled and coupled simulation method,damage assessment based on residual axial capacity,vulnerability analysis and machine learning are considered and reviewed.The merits and defects of the existing approaches are discussed,and some suggestions for possible improvement are proposed.Further investigation into the future development of this topic has also been identified.
基金supported by the National Natural Science Foundation of China (Grant Nos.51878445,51938011 and 51908405)。
文摘It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of building structures against multi-hazard is becoming more and more obvious.Therefore,the damage analysis of building structures under the combined action of multiple hazards has become a very urgent requirement for disaster prevention and reduction.In this paper,the refined finite element model of reinforced concrete(RC)columns is established by using the explicit dynamic analysis software LS-DYNA.Combined with the Monte Carlo method,the damage law of RC columns under the combined action of random single earthquake or explosion disaster and multi-hazard is studied,and the damage groups are distinguished according to the damage index.Based on the support vector machine(SVM)algorithm,the dividing line between different damage degree groups is determined,and a rapid method for determining the damage degree of RC columns under the combined seismic and blast loads is proposed.Finally,suggestions for the design of RC column against multi-disaster are put forward.
基金the National Natural Science Foundation of China (No.50508020)
文摘The effects of length and location of the steel corrosion on the structural behavior and load capacity of reinforced concrete (RC) columns have been investigated. Results of the accelerated corrosion process and eccentric load test are presented in detail. Effects of the location of the partial length, the corrosion level within partial length and the asymmetrical deterioration of the concrete section on the mechanical behavior and load capacity of corroded RC columns are discussed. It is found that the mechanical behavior and load carrying capacity of corroded RC columns are simultaneously affected by the above mentioned factors. For the corroded RC columns with large eccentricity, a higher corrosion level in the tensile corroded length and a greater asymmetrical deterioration of the concrete section can result in less ductile behavior and larger load reduction of the column; while for the corroded RC columns with small eccentricity, the less ductile behavior and the larger load reduction of the column may result from the higher corrosion level in the compressive corroded length and the greater asymmetrical deterioration of the concrete
基金The research was financially supported by the Ministry of Science and Technology of China(No.2017YFC0703603)the Taishan Scholar Priority Discipline Talent Group program funded by the Shandong Province,and the Universiti Kebangsaan Malaysia Grant FRGS-1-2015-TK01-UKM02-4 and AP-2015-011.
文摘Reinforced concretes(RC)have been widely used in constructions.In construction,one of the eritical elements carrying a high percentage of the weight is columns which were not used 1o design to absorb large dynamic load like surface bursts.This study focuses on investigating blast load parameters to design of RC columns to withstand blast detonation.The numerical model is based on finite element amalysis using LS-DYNA.Numerical results are validated against blast feld tests available in the lterature.Couples of simulations are performed with changing blast parameters to.study efects of various scaled distances on the nonlinear bchavior of RC columns.According to simulation results,the scaled distance has a substantial infuence on the blast response of RC columns.With lower scaled distance,higher peak pressure and larger pressure impulse are applied on the RC column.Eventually,keeping the scaled disance unchanged,increasing the charge weight or shorter standoff distance cause more damage to the RC column.Intensive studies are carried out to investigate the efects of scaled distance and charge weight on the damage degree and residual axial load carrying capacity of RC columns with various column width,longitudinal reinforcement ratio and concrete strength.Results of this research will be used to asessmsent the efet of an explosion on the dynamic behavior of RC columns.
基金supported by the National Natural Science Foundation of China under Grant Nos.U21A20515,62172416,52175493,U2003109,61972459,and 62102414the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2022131).
文摘The popularity of online home design and floor plan customization has been steadily increasing. However, the manual conversion of floor plan images from books or paper materials into electronic resources can be a challenging task due to the vast amount of historical data available. By leveraging neural networks to identify and parse floor plans, the process of converting these images into electronic materials can be significantly streamlined. In this paper, we present a novel learning framework for automatically parsing floor plan images. Our key insight is that the room type text is very common and crucial in floor plan images as it identifies the important semantic information of the corresponding room. However, this clue is rarely considered in previous learning-based methods. In contrast, we propose the Row and Column network (RC-Net) for recognizing floor plan elements by integrating the text feature. Specifically, we add the text feature branch in the network to extract text features corresponding to the room type for the guidance of room type predictions. More importantly, we formulate the Row and Column constraint module (RC constraint module) to share and constrain features across the entire row and column of the feature maps to ensure that only one type is predicted in each room as much as possible, making the segmentation boundaries between different rooms more regular and cleaner. Extensive experiments on three benchmark datasets validate that our framework substantially outperforms other state-of-the-art approaches in terms of the metrics of FWIoU, mACC and mIoU.
基金the Programs for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education of China(No.IRT1067)the National Natural Science Foundation of China(No.51868065)。
文摘Additional hysteretic experiments for corroded rectangular reinforced concrete(RC)columns with an axial load ratio of 0.27 were implemented.A quasi-static cyclic lateral loading with constant axial force was subjected to tests.Herein,a modified ductility factor model for corroded RC column is developed on the basis of the previous work and additional experiments.The model involves the influence of both the corrosion ratio of longitudinal rebar and the axial load ratio.A four-linear envelope curve model concerning lateral load and displacement is proposed in a combination of determination rules of the peak point and the failure strength point.The hysteretic model of corroded RC columns is developed by considering both degraded unloading stiffness and reloading stiffness on the history peak point.The hysteretic model can predict the residual life of corroded RC columns under seismic loading.