This letter introduces a 4th order active RC complex filter with 1.SMHz center frequency and 1MHz bandwidth. The total harmonic distortion of the filter is less than -60dB and the image rejection ratio is greater than...This letter introduces a 4th order active RC complex filter with 1.SMHz center frequency and 1MHz bandwidth. The total harmonic distortion of the filter is less than -60dB and the image rejection ratio is greater than 60dB. A novel technique is also proposed in this letter to automatically adjust the variation of the time constant. The advantages of the proposed method are its high precision and simplicity. Using 5bits control words, the tuning error is less than ±1.6%.展开更多
A reconfigurable complex band-pass (CBP)/low-pass (LP) active-RC filter with a noise-shaping technique for wireless receivers is presented. Its bandwidth is reconfigurable among 500 kHz, 1 MHz and 4 MHz in LP mode...A reconfigurable complex band-pass (CBP)/low-pass (LP) active-RC filter with a noise-shaping technique for wireless receivers is presented. Its bandwidth is reconfigurable among 500 kHz, 1 MHz and 4 MHz in LP mode and 1 MHz, 2 MHz and 8 MHz in CBP mode with 3 MHz center frequency. The Op-Amps used in the filter are realized in cell arrays in order to obtain scalable power consumption among the different operation modes. Furthermore, the filter can be configured into the 1st order, 2nd order or 3rd order mode, thus achieving a flexible filtering property. The noise-shaping technique is introduced to suppress the flicker noise contribution. The filter has been implemented in 180 nm CMOS and consumes less than 3 mA in the 3rd 8 MHz-bandwidth CBP mode. The spot noise at 100 Hz can be reduced by 14.4 dB at most with the introduced noise-shaping technique.展开更多
CR–RCm filters are widely used in nuclear energy spectrum measurement systems. The choice of parameters of a CR–RCm digital filter directly affects its performance in terms of energy resolution and pulse count rate ...CR–RCm filters are widely used in nuclear energy spectrum measurement systems. The choice of parameters of a CR–RCm digital filter directly affects its performance in terms of energy resolution and pulse count rate in digital nuclear spectrometer systems. A numerical recursive model of a CR differential circuit and RC integration circuit is derived, which shows that the shaping result of CR–RCm is determined by the adjustment parameter (k, it determines the shaping time of the shaper) and the integral number (m). Furthermore, the amplitude– frequency response of CR–RC^m is analyzed, which shows that it is a bandpass filter;the larger the shaping parameters (k and m), the narrower is the frequency band. CR–RC^m digital Gaussian shaping is performed on the actual sampled nuclear pulse signal under different shaping parameters. The energy spectrum of 137Cs is measured based on the LaBr3(Ce) detector under different parameters. The results show that the larger the shaping parameters (m and k), the closer the shaping result is to Gaussian shape, the wider is the shaped pulse, the higher is the energy resolution, and the lower is the pulse count rate. For the same batch of pulse signals, the energy resolution is increased from 3.8 to 3.5%, and the full energy peak area is reduced from 7815 to 6503. Thus, the optimal shaping parameters are m -3 and k -0.95. These research results can provide a design reference for the development of digital nuclear spectrometer measurement systems.展开更多
In this paper a comparison of a sixth-order active band pass R-filter output response with the output response of a sixth-order band pass RC-filter at different quality factors (Q = 2, 5, 7, 8 and 10) was carried out ...In this paper a comparison of a sixth-order active band pass R-filter output response with the output response of a sixth-order band pass RC-filter at different quality factors (Q = 2, 5, 7, 8 and 10) was carried out at a fixed frequency of 10 KHz. The architecture used in the design is the multiple feedbacks for both filter networks. The simulated response characteristics show that both filters (R- and RC-filters) have their mid-band gains increasing with Q, while their bandwidths monotonically decreased with Q-values. The bandwidths are in the range of 22.23 dB to 62.97 dB and –55.49 dB to –50.81 dB (Q = 2 to 10) for R- and RC-filters respectively. At higher Q-values, R-filter showed better selectivity with a smaller bandwidth (400 Hz) at the edge of the pass band, when compared to 450 Hz for the RC-filter. The roll-off rate around –58.9 dB/decade for the R-filter appears to be that of a third-order filter response, while the RC-filter has its response in the range –106 to –132 dB/decade which is in the neighbourhood of an ideal sixth-order response (roll-off of 120 db/decade). A shift in the center frequency with Q was observed for the RC-filter only.展开更多
This paper describes a complete baseband chain for both GSM and WCDMA receivers with a SMIC 0.35μm mixed signal process. The chain consists of a dual-mode,highly linear, fourth order Chebyshev active RC filter and th...This paper describes a complete baseband chain for both GSM and WCDMA receivers with a SMIC 0.35μm mixed signal process. The chain consists of a dual-mode,highly linear, fourth order Chebyshev active RC filter and three VGA stages. The filter is designed to meet the bandwidth specifications of the GSM and WCDMA standards and share the maximum number of components between the two modes to reduce manufacturing cost. The design is free of DC-offset and has an inter-stage high-pass filter, and operational amplifiers with adjustable GBW are used to minimize GSM-mode power consumption. The measured noise figures are 27. 3 and 42dBm in WCDMA and GSM modes,respectively, at the maximum gain. The IIP3 is 40dBm at unit gain in the WCDMA mode,and the circuit consumes 47.0mW. The IIP3 is 28dBm in the GSM mode,and the circuit consumes 31.8mW. The supply voltage is 3.3V.展开更多
基金Supported by the Key Project of the National Natural Science Foundation of China (No.60437030) the Tianjin Natural Science Foundation (No.05YFJMJC01400).
文摘This letter introduces a 4th order active RC complex filter with 1.SMHz center frequency and 1MHz bandwidth. The total harmonic distortion of the filter is less than -60dB and the image rejection ratio is greater than 60dB. A novel technique is also proposed in this letter to automatically adjust the variation of the time constant. The advantages of the proposed method are its high precision and simplicity. Using 5bits control words, the tuning error is less than ±1.6%.
基金Project supported by the National Science and Technology Major Projects of China(No.2012ZX03004007)the National Natural Science Foundation of China(Nos.61020106006,61076029)
文摘A reconfigurable complex band-pass (CBP)/low-pass (LP) active-RC filter with a noise-shaping technique for wireless receivers is presented. Its bandwidth is reconfigurable among 500 kHz, 1 MHz and 4 MHz in LP mode and 1 MHz, 2 MHz and 8 MHz in CBP mode with 3 MHz center frequency. The Op-Amps used in the filter are realized in cell arrays in order to obtain scalable power consumption among the different operation modes. Furthermore, the filter can be configured into the 1st order, 2nd order or 3rd order mode, thus achieving a flexible filtering property. The noise-shaping technique is introduced to suppress the flicker noise contribution. The filter has been implemented in 180 nm CMOS and consumes less than 3 mA in the 3rd 8 MHz-bandwidth CBP mode. The spot noise at 100 Hz can be reduced by 14.4 dB at most with the introduced noise-shaping technique.
基金supported by National Natural Science Foundation of China(Nos.11665001,41864007)National Key R&D Project(No.2017YFF0106503)+1 种基金China Scholarship Council(No.201708360170)One Hundred People Sail in Jiangxi Province,Open-ended Foundation from the Chinese Engineering Research Center(No.HJSJYB2014-03)
文摘CR–RCm filters are widely used in nuclear energy spectrum measurement systems. The choice of parameters of a CR–RCm digital filter directly affects its performance in terms of energy resolution and pulse count rate in digital nuclear spectrometer systems. A numerical recursive model of a CR differential circuit and RC integration circuit is derived, which shows that the shaping result of CR–RCm is determined by the adjustment parameter (k, it determines the shaping time of the shaper) and the integral number (m). Furthermore, the amplitude– frequency response of CR–RC^m is analyzed, which shows that it is a bandpass filter;the larger the shaping parameters (k and m), the narrower is the frequency band. CR–RC^m digital Gaussian shaping is performed on the actual sampled nuclear pulse signal under different shaping parameters. The energy spectrum of 137Cs is measured based on the LaBr3(Ce) detector under different parameters. The results show that the larger the shaping parameters (m and k), the closer the shaping result is to Gaussian shape, the wider is the shaped pulse, the higher is the energy resolution, and the lower is the pulse count rate. For the same batch of pulse signals, the energy resolution is increased from 3.8 to 3.5%, and the full energy peak area is reduced from 7815 to 6503. Thus, the optimal shaping parameters are m -3 and k -0.95. These research results can provide a design reference for the development of digital nuclear spectrometer measurement systems.
文摘In this paper a comparison of a sixth-order active band pass R-filter output response with the output response of a sixth-order band pass RC-filter at different quality factors (Q = 2, 5, 7, 8 and 10) was carried out at a fixed frequency of 10 KHz. The architecture used in the design is the multiple feedbacks for both filter networks. The simulated response characteristics show that both filters (R- and RC-filters) have their mid-band gains increasing with Q, while their bandwidths monotonically decreased with Q-values. The bandwidths are in the range of 22.23 dB to 62.97 dB and –55.49 dB to –50.81 dB (Q = 2 to 10) for R- and RC-filters respectively. At higher Q-values, R-filter showed better selectivity with a smaller bandwidth (400 Hz) at the edge of the pass band, when compared to 450 Hz for the RC-filter. The roll-off rate around –58.9 dB/decade for the R-filter appears to be that of a third-order filter response, while the RC-filter has its response in the range –106 to –132 dB/decade which is in the neighbourhood of an ideal sixth-order response (roll-off of 120 db/decade). A shift in the center frequency with Q was observed for the RC-filter only.
文摘This paper describes a complete baseband chain for both GSM and WCDMA receivers with a SMIC 0.35μm mixed signal process. The chain consists of a dual-mode,highly linear, fourth order Chebyshev active RC filter and three VGA stages. The filter is designed to meet the bandwidth specifications of the GSM and WCDMA standards and share the maximum number of components between the two modes to reduce manufacturing cost. The design is free of DC-offset and has an inter-stage high-pass filter, and operational amplifiers with adjustable GBW are used to minimize GSM-mode power consumption. The measured noise figures are 27. 3 and 42dBm in WCDMA and GSM modes,respectively, at the maximum gain. The IIP3 is 40dBm at unit gain in the WCDMA mode,and the circuit consumes 47.0mW. The IIP3 is 28dBm in the GSM mode,and the circuit consumes 31.8mW. The supply voltage is 3.3V.