Pulmonary macrophages,such as tissue-resident alveolar and interstitial macrophages and recruited monocyte-derived macrophages,are the major macrophages present in the lungs during homeostasis and diseased conditions....Pulmonary macrophages,such as tissue-resident alveolar and interstitial macrophages and recruited monocyte-derived macrophages,are the major macrophages present in the lungs during homeostasis and diseased conditions.While tissue-resident macrophages act as sentinels of the alveolar space and play an important role in maintaining homeostasis and immune regulation,recruited macrophages accumulate in the respiratory tract after acute viral infections.Despite sharing similar anatomical niches,these macrophages are distinct in terms of their origins,surface marker expression,and transcriptional profiles,which impart macrophages with distinguished characteristics in physi-ological and pathophysiological conditions.In this review,we summarize the current view on these macrophage populations,their shared functions,and what makes them distinct from each other in the context of homeostasis andrespiratoryviral infections.展开更多
BACKGROUND Diabetic foot ulcers(DFUs)are one of the most severe and popular complications of diabetes.The persistent non-healing of DFUs is the leading cause of amputation,which causes significant mental and financial...BACKGROUND Diabetic foot ulcers(DFUs)are one of the most severe and popular complications of diabetes.The persistent non-healing of DFUs is the leading cause of amputation,which causes significant mental and financial stress to patients and their families.Macrophages are critical cells in wound healing and perform essential roles in all phases of wound healing.However,no studies have been carried out to systematically illustrate this area from a scientometric point of view.Although there have been some bibliometric studies on diabetes,reports focusing on the investigation of macrophages in DFUs are lacking.AIM To perform a bibliometric analysis to systematically assess the current state of research on macrophage-related DFUs.METHODS The publications of macrophage-related DFUs from January 1,2004,to December 31,2023,were retrieved from the Web of Science Core Collection on January 9,2024.Four different analytical tools:VOSviewer(v1.6.19),CiteSpace(v6.2.R4),HistCite(v12.03.07),and Excel 2021 were used for the scientometric research.RESULTS A total of 330 articles on macrophage-related DFUs were retrieved.The most published countries,institutions,journals,and authors in this field were China,Shanghai Jiao Tong University of China,Wound Repair and Regeneration,and Aristidis Veves.Through the analysis of keyword co-occurrence networks,historical direct citation networks,thematic maps,and trend topics maps,we synthesized the prevailing research hotspots and emerging trends in this field.CONCLUSION Our bibliometric analysis provides a comprehensive overview of macrophage-related DFUs research and insights into promising upcoming research.展开更多
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms.Nanomaterials(NMs)have been engineered to monitor macrophage metabolism,enabli...Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms.Nanomaterials(NMs)have been engineered to monitor macrophage metabolism,enabling the evaluation of disease progression and the replication of intricate physiological signal patterns.They achieve this either directly or by delivering regulatory signals,thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy.However,a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking.This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy.We initially explore the relationship between metabolism,polarization,and disease,before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy.Finally,we discuss the prospects and challenges of NM-mediated metabolic immunotherapy,aiming to accelerate clinical translation.We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.展开更多
Objective The effect of the functionally unknown gene C6orf120 on autoimmune hepatitis was investigated on C6orf120 knockout rats(C6orf120^(-/-))and THP-1 cells.Method Six–eight-week-old C6orf120^(-/-)and wild-type(W...Objective The effect of the functionally unknown gene C6orf120 on autoimmune hepatitis was investigated on C6orf120 knockout rats(C6orf120^(-/-))and THP-1 cells.Method Six–eight-week-old C6orf120^(-/-)and wild-type(WT)SD rats were injected with Con A(16 mg/kg),and euthanized after 24 h.The sera,livers,and spleens were collected.THP-1 cells and the recombinant protein(rC6ORF120)were used to explore the mechanism in vitro.The frequency of M1 and M2 macrophages was analyzed using flow cytometry.Western blotting and PCR were used to detect macrophage polarization-associated factors.Results C6orf120 knockout attenuated Con A-induced autoimmune hepatitis.Flow cytometry indicated that the proportion of CD68^(+)CD86^(+)M1 macrophages from the liver and spleen in the C6orf120^(-/-)rats decreased.C6orf120 knockout induced downregulation of CD86 protein and the mRNA levels of related inflammatory factors TNF-α,IL-1β,and IL-6 in the liver.C6orf120 knockout did not affect the polarization of THP-1 cells.However,rC6ORF120 promoted the THP-1 cells toward CD68^(+)CD80^(+)M1 macrophages and inhibited the CD68^(+)CD206^(+)M2 phenotype.Conclusion C6orf120 knockout alleviates Con A-induced autoimmune hepatitis by inhibiting macrophage polarization toward M1 macrophages and reducing the expression of related inflammatory factors in C6orf120^(-/-)rats.展开更多
Tumor-associated macrophages(TAMs)are emerging as targets for tumor therapy because of their primary role in promoting tumor progression.Several studies have been conducted to target TAMs by reducing their infiltratio...Tumor-associated macrophages(TAMs)are emerging as targets for tumor therapy because of their primary role in promoting tumor progression.Several studies have been conducted to target TAMs by reducing their infiltration,depleting their numbers,and reversing their phenotypes to suppress tumor progression,leading to the development of drugs in preclinical and clinical trials.However,the heterogeneous characteristics of TAMs,including their ontogenetic and functional heterogeneity,limit their targeting.Therefore,in-depth exploration of the heterogeneity of TAMs,combined with immune checkpoint therapy or other therapeutic modalities could improve the efficiency of tumor treatment.This review focuses on the heterogeneous ontogeny and function of TAMs,as well as the current development of tumor therapies targeting TAMs and combination strategies.展开更多
Objective:To explore the balance of peripheral blood T helper 17 cells/regulatory T cell(Th17/Treg)ratio and the polarization ratio of M1 and M2 macrophages in lower extremity arteriosclerosis obliterans(ASO).Methods:...Objective:To explore the balance of peripheral blood T helper 17 cells/regulatory T cell(Th17/Treg)ratio and the polarization ratio of M1 and M2 macrophages in lower extremity arteriosclerosis obliterans(ASO).Methods:A rat model of lower extremity ASO was established,and blood samples from patients with lower extremity ASO before and after surgery were obtained.ELISA was used to detect interleukin 6(IL-6),IL-10,and IL-17.Real-time RCR and Western blot analyses were used to detect Foxp3,IL-6,IL-10,and IL-17 expression.Moreover,flow cytometry was applied to detect the Th17/Treg ratio and M1/M2 ratio.Results:Compared with the control group,the iliac artery wall of ASO rats showed significant hyperplasia,and the concentrations of cholesterol and triglyceride were significantly increased(P<0.01),indicating the successful establishment of ASO.Moreover,the levels of IL-6 and IL-17 in ASO rats were pronouncedly increased(P<0.05),while the IL-10 level was significantly decreased(P<0.05).In addition to increased IL-6 and IL-17 levels,the mRNA and protein levels of Foxp3 and IL-10 in ASO rats were significantly decreased compared with the control group.The Th17/Treg and M1/M2 ratios in the ASO group were markedly increased(P<0.05).These alternations were also observed in ASO patients.After endovascular surgery(such as percutaneous transluminal angioplasty and arterial stenting),all these changes were significantly improved(P<0.05).Conclusions:The Th17/Treg and M1/M2 ratios were significantly increased in ASO,and surgery can effectively improve the balance of Th17/Treg,and reduce the ratio of M1/M2,and the expression of inflammatory factors.展开更多
The problem of liver cancer is becoming increasingly important due to the epi-demic of metabolic diseases and persistent high alcohol consumption.This deter-mines great attention to the development and improvement of ...The problem of liver cancer is becoming increasingly important due to the epi-demic of metabolic diseases and persistent high alcohol consumption.This deter-mines great attention to the development and improvement of methods for early diagnosis and treatment of liver cancer.Huang et al presented a study in the World Journal of Gastroenterology,in which they showed that the use of the traditional Chinese medicine Calculus bovis(CB)can suppress tumor growth in mice by inhibiting M2 tumor-associated macrophages(TAM)through modulating the activity of the Wnt/β-catenin pathway.The interaction of CB components with the Wnt/β-catenin pathway,M2 TAM polarization,and tumor dynamics were studied using network pharmacology,transcriptomics,and molecular docking.It is now generally accepted that the polarization of TAM and the differentiation of the functions of M1 and M2 phagocytes are of great importance for the progression of neoplasms.It is assumed that M2 TAM promote proliferation and migration of tumor cells.Attempts to medicinally influence the Wnt/β-catenin pathway in order to modulate phagocyte polarization now belong to one of the most promising areas of immunotherapy of oncological diseases.Undoubtedly,the work of the Chinese authors deserves attention and further development.展开更多
BACKGROUND Colorectal cancer(CRC)is a prevalent global malignancy with complex prognostic factors.Tumor-associated macrophages(TAMs)have shown paradoxical associations with CRC survival,particularly concerning the M2 ...BACKGROUND Colorectal cancer(CRC)is a prevalent global malignancy with complex prognostic factors.Tumor-associated macrophages(TAMs)have shown paradoxical associations with CRC survival,particularly concerning the M2 subset.AIM We aimed to establish a simplified protocol for quantifying M2-like TAMs and explore their correlation with clinicopathological factors.METHODS A cross-sectional study included histopathological assessment of paraffinembedded tissue blocks obtained from 43 CRC patients.Using CD68 and CD163 immunohistochemistry,we quantified TAMs in tumor stroma and front,focusing on M2 proportion.Demographic,histopathological,and clinical parameters were collected.RESULTS TAM density was significantly higher at the tumor front,with the M2 proportion three times greater in both zones.The tumor front had a higher M2 proportion,which correlated significantly with advanced tumor stage(P=0.04),pathological nodal involvement(P=0.04),and lymphovascular invasion(LVI,P=0.01).However,no significant association was found between the M2 proportion in the tumor stroma and clinicopathological factors.CONCLUSION Our study introduces a simplified protocol for quantifying M2-like TAMs in CRC tissue samples.We demonstrated a significant correlation between an increased M2 proportion at the tumor front and advanced tumor stage,nodal involvement,and LVI.This suggests that M2-like TAMs might serve as potential indicators of disease progression in CRC,warranting further investigation and potential clinical application.展开更多
BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which...BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth.展开更多
Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pat...Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis,a traditional experimental model of multiple sclerosis.This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis.We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type,as shown by reduced expression of inducible nitric oxide synthase/nitric oxide,interleukin-12,and CD16/32 and increased expression of arginase-1,interleukin-10,CD14,and CD206,which was linked to inhibition of Rho kinase activity,decreased expression of toll-like receptors,nuclear factor-κB,and components of the mitogen-activated protein kinase signaling pathway,and generation of the pro-inflammatory cytokines tumor necrosis factor-α,interleukin-1β,and interleukin-6.Crucially,Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis,resulting in later onset of disease,lower symptom scores,less weight loss,and reduced demyelination compared with unmodified macrophages.In addition,Fasudil-modified macrophages decreased interleukin-17 expression on CD4^(+)T cells and CD16/32,inducible nitric oxide synthase,and interleukin-12 expression on F4/80^(+)macrophages,as well as increasing interleukin-10 expression on CD4^(+)T cells and arginase-1,CD206,and interleukin-10 expression on F4/80^(+)macrophages,which improved immune regulation and reduced inflammation.These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response,thereby providing new insight into cell immunotherapy for multiple sclerosis.展开更多
BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations...BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations observed in renal tissue.Never-theless,the precise molecular mechanism through which myricetin influences the progression of DN remains uncertain.AIM To investigate the effects of myricetin on DN and explore its potential therapeutic mechanism.METHODS Db/db mice were administered myricetin intragastrically on a daily basis at doses of 50 mg/kg or 100 mg/kg for a duration of 12 wk.Subsequently,blood and urine indexes were assessed,along with examination of renal tissue pathology.Kidney morphology and fibrosis were evaluated using various staining techniques including hematoxylin and eosin,periodic acid–Schiff,Masson’s trichrome,and Sirius-red.Additionally,high-glucose culturing was conducted on the RAW 264.7 cell line,treated with 25 mM myricetin or co-administered with the PI3K/Akt inhibitor LY294002 for a period of 24 h.In both in vivo and in vitro settings,quantification of inflammation factor levels was conducted using western blotting,real-time qPCR and ELISA.RESULTS In db/db mice,administration of myricetin led to a mitigating effect on DN-induced renal dysfunction and fibrosis.Notably,we observed a significant reduction in expressions of the kidney injury markers kidney injury molecule-1 and neutrophil gelatinase associated lipocalin,along with a decrease in expressions of inflammatory cytokine-related factors.Furthermore,myricetin treatment effectively inhibited the up-regulation of tumor necrosis factor-alpha,interleukin-6,and interluekin-1βinduced by high glucose in RAW 264.7 cells.Additionally,myricetin modulated the M1-type polarization of the RAW 264.7 cells.Molecular docking and bioinformatic analyses revealed Akt as the target of myricetin.The protective effect of myricetin was nullified upon blocking the polarization of RAW 264.7 via inhibition of PI3K/Akt activation using LY294002.CONCLUSION This study demonstrated that myricetin effectively mitigates kidney injury in DN mice through the regulation of macrophage polarization via the PI3K/Akt signaling pathway.展开更多
Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classica...Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classically activated macrophage(M1)polarization.In this study,we established THP-1-derived testing state macrophages(M0),M1 macrophages,and alternately activated macrophages(M2).Real-time fluorescence quantitative PCR was used to verify the expression of marker genes and the expression of lnc_000048 in macrophages.Flow cytometry was used to detect phenotypic proteins(CD11b,CD38,CD80).We generated cell lines with lentivirus-mediated upregulation or downregulation of lnc_000048.Flow cytometry,western blot,and real-time fluorescence quantitative PCR results showed that down-regulation of lnc_000048 reduced M1 macrophage polarization and the inflammation response,while over-expression of lnc_000048 led to the opposite effect.Western blot results indicated that lnc_000048 enhanced the activation of the STAT1 pathway and mediated the M1 macrophage polarization.Moreover,catRAPID prediction,RNA-pull down,and mass spectrometry were used to identify and screen the protein kinase RNA-activated(PKR),then catRAPID and RPIseq were used to predict the binding ability of lnc_000048 to PKR.Immunofluorescence(IF)-RNA fluorescence in situ hybridization(FISH)double labeling was performed to verify the subcellular colocalization of lnc_000048 and PKR in the cytoplasm of M1 macrophage.We speculate that lnc_000048 may form stem-loop structure-specific binding and activate PKR by inducing its phosphorylation,leading to activation of STAT1 phosphorylation and thereby enhancing STAT1 pathway-mediated polarization of THP-1 macrophages to M1 and inflammatory factor expression.Taken together,these results reveal that the lnc_000048/PKR/STAT1 axis plays a crucial role in the polarization of M1 macrophages and may be a novel therapeutic target for atherosclerosis alleviation in stroke.展开更多
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ...Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.展开更多
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t...Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.展开更多
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)...Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.展开更多
BACKGROUND The regulatory effects of KIF26B on gastric cancer(GC)have been confirmed,but the specific mechanism still needs further exploration.Pan-cancer analysis shows that the KIF26B expression is highly related to...BACKGROUND The regulatory effects of KIF26B on gastric cancer(GC)have been confirmed,but the specific mechanism still needs further exploration.Pan-cancer analysis shows that the KIF26B expression is highly related to immune infiltration of cancerassociated fibroblasts(CAFs),and CAFs promote macrophage M2 polarization and affect cancers’progression.AIM To investigate the regulatory functions of KIF26B on immune and metastasis of GC.METHODS We analyzed genes’mRNA levels by quantitative real-time polymerase chain reaction.Expression levels of target proteins were detected by immunohistochemistry,ELISA,and Western blotting.We injected AGS cells into nude mice for the establishment of a xenograft tumor model and observed the occurrence and metastasis of GC.The degree of inflammatory infiltration in pulmonary nodes was observed through hematoxylin-eosin staining.Transwell and wound healing assays were performed for the evaluation of cell invasion and migration ability.Tube formation assay was used for detecting angiogenesis.M2-polarized macrophages were estimated by immunofluorescence and flow cytometry.RESULTS KIF26B was significantly overexpressed in cells and tissues of GC,and the higher expression of KIF26B was related to GC metastasis and prognosis.According to in vivo experiments,KIF26B promoted tumor formation and metastasis of GC.KIF26B expression was positively associated with CAFs’degree of infiltration.Moreover,CAFs could regulate M2-type polarization of macrophages,affecting GC cells’migration,angiogenesis,invasion,and epithelial-mesenchymal transition process.CONCLUSION KIF26B regulated M2 polarization of macrophage through activating CAFs,regulating the occurrence and metastasis of GC.展开更多
Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate w...Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism.Methods:After gavage feeding polydatin once daily for a week,mice underwent a partial hepatic I/R procedure.Serum alanine aminotransferase(ALT)/aspartate aminotransferase(AST),hematoxylin-eosin(H&E)and TdT-mediated dUTP nick-end labeling(TUNEL)staining were used to evaluate liver injury.The severity related to the inflammatory response and reactive oxygen species(ROS)production was also investigated.Furthermore,immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages.Results:Compared with the I/R group,polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis.The oxidative stress marker(dihydroethidium fluorescence,malondialdehyde,superoxide dismutase and glutathione peroxidase)and I/R related inflammatory cytokines(interleukin1β,interleukin-10 and tumor necrosis factor-α)were significantly suppressed after polydatin treatment.In addition,the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro.Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway.Conclusions:Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NFκB signaling.展开更多
Colorectal cancer(CRC)is a major global health problem with high morbidity and mortality rates.Surgical resection is the main treatment for early-stage CRC,but detecting it early is challenging.Therefore,effective the...Colorectal cancer(CRC)is a major global health problem with high morbidity and mortality rates.Surgical resection is the main treatment for early-stage CRC,but detecting it early is challenging.Therefore,effective therapeutic targets for advanced patients are still lacking.Exosomes,tiny vesicles in body fluids,play a crucial role in tumor metastasis,immune regulation,and drug resistance.Interestingly,they can even serve as a biomarker for cancer diagnosis and prognosis.Studies have shown that exosomes can carry miRNA,mediate the polarization of M1/M2 macrophages,promote the proliferation and metastasis of cancer cells,and affect the prognosis of CRC.Since the gastrointestinal tract has many macrophages,understanding the mechanism behind exosomal miRNA-mediated macrophage polarization in CRC treatment is crucial.This article summarizes recent advancements in the study of exosomal miRNAs in CRC and their potential as diagnostic and prognostic markers.展开更多
Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challe...Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challenge in treating skeletal muscle-related disorders.Owing to their significant role in tissue regeneration,implantation of M2 macrophages(M2MФ)has great potential for improving skeletal muscle regeneration.Here,we present a short-wave infrared(SWIR)fluorescence imaging technique to obtain more in vivo information for an in-depth evaluation of the skeletal muscle regeneration effect after M2MФtransplantation.SWIR fluorescence imaging was employed to track implanted M2MФin the injured skeletal muscle of mouse models.It is found that the implanted M2MФaccumulated at the injury site for two weeks.Then,SWIR fluorescence imaging of blood vessels showed that M2MФimplantation could improve the relative perfusion ratio on day 5(1.09±0.09 vs 0.85±0.05;p=0.01)and day 9(1.38±0.16 vs 0.95±0.03;p=0.01)post-injury,as well as augment the degree of skeletal muscle regencration on day 13 post-injury.Finally,multiple linear regression analyses determined that post-injury time and relative perfusion ratio could be used as predictive indicators to evaluate skeletal muscle regeneration.These results provide more in vivo details about M2MФin skeletal muscle regeneration and confirm that M2MФcould promote angiogenesis and improve the degree of skeletal muscle repair,which will guide the research and development of M2MФimplantation to improve skeletal muscle regeneration.展开更多
The biological activity of plant polysaccharides can be enhanced by sulfated modification.In this study,the immunomodulatory effect of sulfated Cyclocarya paliurus polysaccharides(SCP3)on macrophages RAW264.7 and its ...The biological activity of plant polysaccharides can be enhanced by sulfated modification.In this study,the immunomodulatory effect of sulfated Cyclocarya paliurus polysaccharides(SCP3)on macrophages RAW264.7 and its potential molecular mechanism were investigated.Results showed that SCP3 at 25-100μg/m L increased viability and improved phagocytosis of RAW264.7 cells.Meanwhile,SCP3 could activate mitogen-activated protein kinase(MAPK)and nuclear factor kappa B(NF-κB)signaling pathways,which increased the phosphorylation of Erk1/2,JNK,p38 and NF-κB p65,promoting secretion of cytokines tumor necrosis factorα(TNF-α),interleukin 6(IL-6)and nitric oxide(NO)as well as the production of reactive oxygen species(ROS).In addition,Toll-like receptor 4(TLR4)receptor inhibitors were able to block the production of NO and TNF-αby SCP3-stimulated macrophages.Based on Western blot analysis and validation using specific inhibitors against MAPK and NF-κB signaling pathways,the results demonstrated that SCP3 induced macrophages activation and enhanced TNF-αand NO production via TLR4-mediated MAPK and NF-κB pathways.In summary,SCP3 has significant immunomodulatory potential.The underlying molecular mechanism was that SCP3 activates macrophages via TLR4 receptors to promote ROS production,which in turn activates the downstream MAPK/NF-κB signaling pathway and then increases the secretion levels of cytokines and NO.展开更多
基金supported by US National Institutes of Health grants Al147394,AG069264,Al112844,HL170961 and Al154598 to J.S.
文摘Pulmonary macrophages,such as tissue-resident alveolar and interstitial macrophages and recruited monocyte-derived macrophages,are the major macrophages present in the lungs during homeostasis and diseased conditions.While tissue-resident macrophages act as sentinels of the alveolar space and play an important role in maintaining homeostasis and immune regulation,recruited macrophages accumulate in the respiratory tract after acute viral infections.Despite sharing similar anatomical niches,these macrophages are distinct in terms of their origins,surface marker expression,and transcriptional profiles,which impart macrophages with distinguished characteristics in physi-ological and pathophysiological conditions.In this review,we summarize the current view on these macrophage populations,their shared functions,and what makes them distinct from each other in the context of homeostasis andrespiratoryviral infections.
基金Supported by the Science and Technology Planning Project of Guangzhou,No.2024A03J1132the Foundation of Guangdong Provincial Medical Science and Technology,No.B2024038.
文摘BACKGROUND Diabetic foot ulcers(DFUs)are one of the most severe and popular complications of diabetes.The persistent non-healing of DFUs is the leading cause of amputation,which causes significant mental and financial stress to patients and their families.Macrophages are critical cells in wound healing and perform essential roles in all phases of wound healing.However,no studies have been carried out to systematically illustrate this area from a scientometric point of view.Although there have been some bibliometric studies on diabetes,reports focusing on the investigation of macrophages in DFUs are lacking.AIM To perform a bibliometric analysis to systematically assess the current state of research on macrophage-related DFUs.METHODS The publications of macrophage-related DFUs from January 1,2004,to December 31,2023,were retrieved from the Web of Science Core Collection on January 9,2024.Four different analytical tools:VOSviewer(v1.6.19),CiteSpace(v6.2.R4),HistCite(v12.03.07),and Excel 2021 were used for the scientometric research.RESULTS A total of 330 articles on macrophage-related DFUs were retrieved.The most published countries,institutions,journals,and authors in this field were China,Shanghai Jiao Tong University of China,Wound Repair and Regeneration,and Aristidis Veves.Through the analysis of keyword co-occurrence networks,historical direct citation networks,thematic maps,and trend topics maps,we synthesized the prevailing research hotspots and emerging trends in this field.CONCLUSION Our bibliometric analysis provides a comprehensive overview of macrophage-related DFUs research and insights into promising upcoming research.
基金financially supported by the National Natural Science Foundation of China(Nos.92168106 and 82222039).
文摘Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms.Nanomaterials(NMs)have been engineered to monitor macrophage metabolism,enabling the evaluation of disease progression and the replication of intricate physiological signal patterns.They achieve this either directly or by delivering regulatory signals,thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy.However,a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking.This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy.We initially explore the relationship between metabolism,polarization,and disease,before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy.Finally,we discuss the prospects and challenges of NM-mediated metabolic immunotherapy,aiming to accelerate clinical translation.We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
基金supported by the Dengfeng Talent Support Program of Beijing Municipal Administration of Hospitals[Grant No.DFL20221601]the Natural Science Foundation of Beijing[Grant No.7212053]Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine[Grant No.ZYYCXTD-C-202006].
文摘Objective The effect of the functionally unknown gene C6orf120 on autoimmune hepatitis was investigated on C6orf120 knockout rats(C6orf120^(-/-))and THP-1 cells.Method Six–eight-week-old C6orf120^(-/-)and wild-type(WT)SD rats were injected with Con A(16 mg/kg),and euthanized after 24 h.The sera,livers,and spleens were collected.THP-1 cells and the recombinant protein(rC6ORF120)were used to explore the mechanism in vitro.The frequency of M1 and M2 macrophages was analyzed using flow cytometry.Western blotting and PCR were used to detect macrophage polarization-associated factors.Results C6orf120 knockout attenuated Con A-induced autoimmune hepatitis.Flow cytometry indicated that the proportion of CD68^(+)CD86^(+)M1 macrophages from the liver and spleen in the C6orf120^(-/-)rats decreased.C6orf120 knockout induced downregulation of CD86 protein and the mRNA levels of related inflammatory factors TNF-α,IL-1β,and IL-6 in the liver.C6orf120 knockout did not affect the polarization of THP-1 cells.However,rC6ORF120 promoted the THP-1 cells toward CD68^(+)CD80^(+)M1 macrophages and inhibited the CD68^(+)CD206^(+)M2 phenotype.Conclusion C6orf120 knockout alleviates Con A-induced autoimmune hepatitis by inhibiting macrophage polarization toward M1 macrophages and reducing the expression of related inflammatory factors in C6orf120^(-/-)rats.
基金This work was supported by the National Natural Science Foundation of China(82003018).
文摘Tumor-associated macrophages(TAMs)are emerging as targets for tumor therapy because of their primary role in promoting tumor progression.Several studies have been conducted to target TAMs by reducing their infiltration,depleting their numbers,and reversing their phenotypes to suppress tumor progression,leading to the development of drugs in preclinical and clinical trials.However,the heterogeneous characteristics of TAMs,including their ontogenetic and functional heterogeneity,limit their targeting.Therefore,in-depth exploration of the heterogeneity of TAMs,combined with immune checkpoint therapy or other therapeutic modalities could improve the efficiency of tumor treatment.This review focuses on the heterogeneous ontogeny and function of TAMs,as well as the current development of tumor therapies targeting TAMs and combination strategies.
基金supported by Natural Science Foundation of Hainan Province(820MS135)Hainan Provincial Health Commission 2023 Provincial Key Clinical Discipline(Clinical Medical Center)Construction Unit Fund Project(Qiongwei Yihan[2022]No.341)Hainan Provincial Health Technology Innovation Joint Project(WSJK2024MS209).
文摘Objective:To explore the balance of peripheral blood T helper 17 cells/regulatory T cell(Th17/Treg)ratio and the polarization ratio of M1 and M2 macrophages in lower extremity arteriosclerosis obliterans(ASO).Methods:A rat model of lower extremity ASO was established,and blood samples from patients with lower extremity ASO before and after surgery were obtained.ELISA was used to detect interleukin 6(IL-6),IL-10,and IL-17.Real-time RCR and Western blot analyses were used to detect Foxp3,IL-6,IL-10,and IL-17 expression.Moreover,flow cytometry was applied to detect the Th17/Treg ratio and M1/M2 ratio.Results:Compared with the control group,the iliac artery wall of ASO rats showed significant hyperplasia,and the concentrations of cholesterol and triglyceride were significantly increased(P<0.01),indicating the successful establishment of ASO.Moreover,the levels of IL-6 and IL-17 in ASO rats were pronouncedly increased(P<0.05),while the IL-10 level was significantly decreased(P<0.05).In addition to increased IL-6 and IL-17 levels,the mRNA and protein levels of Foxp3 and IL-10 in ASO rats were significantly decreased compared with the control group.The Th17/Treg and M1/M2 ratios in the ASO group were markedly increased(P<0.05).These alternations were also observed in ASO patients.After endovascular surgery(such as percutaneous transluminal angioplasty and arterial stenting),all these changes were significantly improved(P<0.05).Conclusions:The Th17/Treg and M1/M2 ratios were significantly increased in ASO,and surgery can effectively improve the balance of Th17/Treg,and reduce the ratio of M1/M2,and the expression of inflammatory factors.
文摘The problem of liver cancer is becoming increasingly important due to the epi-demic of metabolic diseases and persistent high alcohol consumption.This deter-mines great attention to the development and improvement of methods for early diagnosis and treatment of liver cancer.Huang et al presented a study in the World Journal of Gastroenterology,in which they showed that the use of the traditional Chinese medicine Calculus bovis(CB)can suppress tumor growth in mice by inhibiting M2 tumor-associated macrophages(TAM)through modulating the activity of the Wnt/β-catenin pathway.The interaction of CB components with the Wnt/β-catenin pathway,M2 TAM polarization,and tumor dynamics were studied using network pharmacology,transcriptomics,and molecular docking.It is now generally accepted that the polarization of TAM and the differentiation of the functions of M1 and M2 phagocytes are of great importance for the progression of neoplasms.It is assumed that M2 TAM promote proliferation and migration of tumor cells.Attempts to medicinally influence the Wnt/β-catenin pathway in order to modulate phagocyte polarization now belong to one of the most promising areas of immunotherapy of oncological diseases.Undoubtedly,the work of the Chinese authors deserves attention and further development.
文摘BACKGROUND Colorectal cancer(CRC)is a prevalent global malignancy with complex prognostic factors.Tumor-associated macrophages(TAMs)have shown paradoxical associations with CRC survival,particularly concerning the M2 subset.AIM We aimed to establish a simplified protocol for quantifying M2-like TAMs and explore their correlation with clinicopathological factors.METHODS A cross-sectional study included histopathological assessment of paraffinembedded tissue blocks obtained from 43 CRC patients.Using CD68 and CD163 immunohistochemistry,we quantified TAMs in tumor stroma and front,focusing on M2 proportion.Demographic,histopathological,and clinical parameters were collected.RESULTS TAM density was significantly higher at the tumor front,with the M2 proportion three times greater in both zones.The tumor front had a higher M2 proportion,which correlated significantly with advanced tumor stage(P=0.04),pathological nodal involvement(P=0.04),and lymphovascular invasion(LVI,P=0.01).However,no significant association was found between the M2 proportion in the tumor stroma and clinicopathological factors.CONCLUSION Our study introduces a simplified protocol for quantifying M2-like TAMs in CRC tissue samples.We demonstrated a significant correlation between an increased M2 proportion at the tumor front and advanced tumor stage,nodal involvement,and LVI.This suggests that M2-like TAMs might serve as potential indicators of disease progression in CRC,warranting further investigation and potential clinical application.
基金Supported by National Natural Science Foundation of China,No.82074450Education Department of Hunan Province,No.21A0243,No.21B0374,No.22B0397,and No.22B0392+2 种基金Research Project of"Academician Liu Liang Workstation"of Hunan University of Traditional Chinese Medicine,No.21YS003Hunan Administration of Traditional Chinese Medicine,No.B2023001 and No.B2023009Hunan Provincial Natural Science Foundation of China,No.2023JJ40481。
文摘BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth.
基金supported by a grant from the Department of Science and Technology of Shanxi Province,China,No.20210302123477(to CL)Datong Bureau of Science and Technology of China,No.2020152(to CL)the Opening Foundation of Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine,No.2022-KF-03(to CL).
文摘Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis,a traditional experimental model of multiple sclerosis.This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis.We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type,as shown by reduced expression of inducible nitric oxide synthase/nitric oxide,interleukin-12,and CD16/32 and increased expression of arginase-1,interleukin-10,CD14,and CD206,which was linked to inhibition of Rho kinase activity,decreased expression of toll-like receptors,nuclear factor-κB,and components of the mitogen-activated protein kinase signaling pathway,and generation of the pro-inflammatory cytokines tumor necrosis factor-α,interleukin-1β,and interleukin-6.Crucially,Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis,resulting in later onset of disease,lower symptom scores,less weight loss,and reduced demyelination compared with unmodified macrophages.In addition,Fasudil-modified macrophages decreased interleukin-17 expression on CD4^(+)T cells and CD16/32,inducible nitric oxide synthase,and interleukin-12 expression on F4/80^(+)macrophages,as well as increasing interleukin-10 expression on CD4^(+)T cells and arginase-1,CD206,and interleukin-10 expression on F4/80^(+)macrophages,which improved immune regulation and reduced inflammation.These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response,thereby providing new insight into cell immunotherapy for multiple sclerosis.
基金Supported by National Natural Science Foundation of China,No.82205025,No.82374355 and No.82174293Subject of Jiangsu Province Hospital of Chinese Medicine,No.Y21023Forth Batch of Construction Program for Inheritance Office of Jiangsu Province Famous TCM Experts,No.[2021]7.
文摘BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations observed in renal tissue.Never-theless,the precise molecular mechanism through which myricetin influences the progression of DN remains uncertain.AIM To investigate the effects of myricetin on DN and explore its potential therapeutic mechanism.METHODS Db/db mice were administered myricetin intragastrically on a daily basis at doses of 50 mg/kg or 100 mg/kg for a duration of 12 wk.Subsequently,blood and urine indexes were assessed,along with examination of renal tissue pathology.Kidney morphology and fibrosis were evaluated using various staining techniques including hematoxylin and eosin,periodic acid–Schiff,Masson’s trichrome,and Sirius-red.Additionally,high-glucose culturing was conducted on the RAW 264.7 cell line,treated with 25 mM myricetin or co-administered with the PI3K/Akt inhibitor LY294002 for a period of 24 h.In both in vivo and in vitro settings,quantification of inflammation factor levels was conducted using western blotting,real-time qPCR and ELISA.RESULTS In db/db mice,administration of myricetin led to a mitigating effect on DN-induced renal dysfunction and fibrosis.Notably,we observed a significant reduction in expressions of the kidney injury markers kidney injury molecule-1 and neutrophil gelatinase associated lipocalin,along with a decrease in expressions of inflammatory cytokine-related factors.Furthermore,myricetin treatment effectively inhibited the up-regulation of tumor necrosis factor-alpha,interleukin-6,and interluekin-1βinduced by high glucose in RAW 264.7 cells.Additionally,myricetin modulated the M1-type polarization of the RAW 264.7 cells.Molecular docking and bioinformatic analyses revealed Akt as the target of myricetin.The protective effect of myricetin was nullified upon blocking the polarization of RAW 264.7 via inhibition of PI3K/Akt activation using LY294002.CONCLUSION This study demonstrated that myricetin effectively mitigates kidney injury in DN mice through the regulation of macrophage polarization via the PI3K/Akt signaling pathway.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2020MH138(to XZ).
文摘Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classically activated macrophage(M1)polarization.In this study,we established THP-1-derived testing state macrophages(M0),M1 macrophages,and alternately activated macrophages(M2).Real-time fluorescence quantitative PCR was used to verify the expression of marker genes and the expression of lnc_000048 in macrophages.Flow cytometry was used to detect phenotypic proteins(CD11b,CD38,CD80).We generated cell lines with lentivirus-mediated upregulation or downregulation of lnc_000048.Flow cytometry,western blot,and real-time fluorescence quantitative PCR results showed that down-regulation of lnc_000048 reduced M1 macrophage polarization and the inflammation response,while over-expression of lnc_000048 led to the opposite effect.Western blot results indicated that lnc_000048 enhanced the activation of the STAT1 pathway and mediated the M1 macrophage polarization.Moreover,catRAPID prediction,RNA-pull down,and mass spectrometry were used to identify and screen the protein kinase RNA-activated(PKR),then catRAPID and RPIseq were used to predict the binding ability of lnc_000048 to PKR.Immunofluorescence(IF)-RNA fluorescence in situ hybridization(FISH)double labeling was performed to verify the subcellular colocalization of lnc_000048 and PKR in the cytoplasm of M1 macrophage.We speculate that lnc_000048 may form stem-loop structure-specific binding and activate PKR by inducing its phosphorylation,leading to activation of STAT1 phosphorylation and thereby enhancing STAT1 pathway-mediated polarization of THP-1 macrophages to M1 and inflammatory factor expression.Taken together,these results reveal that the lnc_000048/PKR/STAT1 axis plays a crucial role in the polarization of M1 macrophages and may be a novel therapeutic target for atherosclerosis alleviation in stroke.
基金supported by the National Natural Science Foundation of China,No.32371048(to YK)the Peking University People’s Hospital Research and Development Funds,No.RDX2021-01(to YK)the Natural Science Foundation of Beijing,No.7222198(to NH)。
文摘Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.
基金supported by the National Natural Science Foundation of China,No.81971097(to JY)。
文摘Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
基金supported by the Fujian Minimally Invasive Medical Center Foundation,No.2128100514(to CC,CW,HX)the Natural Science Foundation of Fujian Province,No.2023J01640(to CC,CW,ZL,HX)。
文摘Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.
文摘BACKGROUND The regulatory effects of KIF26B on gastric cancer(GC)have been confirmed,but the specific mechanism still needs further exploration.Pan-cancer analysis shows that the KIF26B expression is highly related to immune infiltration of cancerassociated fibroblasts(CAFs),and CAFs promote macrophage M2 polarization and affect cancers’progression.AIM To investigate the regulatory functions of KIF26B on immune and metastasis of GC.METHODS We analyzed genes’mRNA levels by quantitative real-time polymerase chain reaction.Expression levels of target proteins were detected by immunohistochemistry,ELISA,and Western blotting.We injected AGS cells into nude mice for the establishment of a xenograft tumor model and observed the occurrence and metastasis of GC.The degree of inflammatory infiltration in pulmonary nodes was observed through hematoxylin-eosin staining.Transwell and wound healing assays were performed for the evaluation of cell invasion and migration ability.Tube formation assay was used for detecting angiogenesis.M2-polarized macrophages were estimated by immunofluorescence and flow cytometry.RESULTS KIF26B was significantly overexpressed in cells and tissues of GC,and the higher expression of KIF26B was related to GC metastasis and prognosis.According to in vivo experiments,KIF26B promoted tumor formation and metastasis of GC.KIF26B expression was positively associated with CAFs’degree of infiltration.Moreover,CAFs could regulate M2-type polarization of macrophages,affecting GC cells’migration,angiogenesis,invasion,and epithelial-mesenchymal transition process.CONCLUSION KIF26B regulated M2 polarization of macrophage through activating CAFs,regulating the occurrence and metastasis of GC.
基金This study was supported by grants from the National Natural Science Foundation of China(No.81970563)the Medical Health Science and Technology Project of Health Commission of Zhejiang Province(2019RC055).
文摘Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism.Methods:After gavage feeding polydatin once daily for a week,mice underwent a partial hepatic I/R procedure.Serum alanine aminotransferase(ALT)/aspartate aminotransferase(AST),hematoxylin-eosin(H&E)and TdT-mediated dUTP nick-end labeling(TUNEL)staining were used to evaluate liver injury.The severity related to the inflammatory response and reactive oxygen species(ROS)production was also investigated.Furthermore,immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages.Results:Compared with the I/R group,polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis.The oxidative stress marker(dihydroethidium fluorescence,malondialdehyde,superoxide dismutase and glutathione peroxidase)and I/R related inflammatory cytokines(interleukin1β,interleukin-10 and tumor necrosis factor-α)were significantly suppressed after polydatin treatment.In addition,the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro.Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway.Conclusions:Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NFκB signaling.
基金Natural Science Foundation of Ningxia(2020AAC03403,2020AAC03178)National Natural Science Foundation of China(82260716,82060663).
文摘Colorectal cancer(CRC)is a major global health problem with high morbidity and mortality rates.Surgical resection is the main treatment for early-stage CRC,but detecting it early is challenging.Therefore,effective therapeutic targets for advanced patients are still lacking.Exosomes,tiny vesicles in body fluids,play a crucial role in tumor metastasis,immune regulation,and drug resistance.Interestingly,they can even serve as a biomarker for cancer diagnosis and prognosis.Studies have shown that exosomes can carry miRNA,mediate the polarization of M1/M2 macrophages,promote the proliferation and metastasis of cancer cells,and affect the prognosis of CRC.Since the gastrointestinal tract has many macrophages,understanding the mechanism behind exosomal miRNA-mediated macrophage polarization in CRC treatment is crucial.This article summarizes recent advancements in the study of exosomal miRNAs in CRC and their potential as diagnostic and prognostic markers.
基金supported by Shanghai Sailing Program(22YF1438700)National Key Research and Development Program of China(2021YFA1201303)+5 种基金National Natural Science Foundation of China(82172511,81972121,81972129,82072521,82011530023,and 82111530200)Sanming Project of Medicine in Shenzhen(SZSM201612078)the Introduction Project of Clinical Medicine Expert Team for Suzhou(SZYJTD201714)Shanghai Talent Development Funding Scheme 2020080Shanghai Sailing Program(21YF1404100 and 22YF1405200)Research Project of Shanghai Science and Technology Commission(22DZ2204900)。
文摘Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challenge in treating skeletal muscle-related disorders.Owing to their significant role in tissue regeneration,implantation of M2 macrophages(M2MФ)has great potential for improving skeletal muscle regeneration.Here,we present a short-wave infrared(SWIR)fluorescence imaging technique to obtain more in vivo information for an in-depth evaluation of the skeletal muscle regeneration effect after M2MФtransplantation.SWIR fluorescence imaging was employed to track implanted M2MФin the injured skeletal muscle of mouse models.It is found that the implanted M2MФaccumulated at the injury site for two weeks.Then,SWIR fluorescence imaging of blood vessels showed that M2MФimplantation could improve the relative perfusion ratio on day 5(1.09±0.09 vs 0.85±0.05;p=0.01)and day 9(1.38±0.16 vs 0.95±0.03;p=0.01)post-injury,as well as augment the degree of skeletal muscle regencration on day 13 post-injury.Finally,multiple linear regression analyses determined that post-injury time and relative perfusion ratio could be used as predictive indicators to evaluate skeletal muscle regeneration.These results provide more in vivo details about M2MФin skeletal muscle regeneration and confirm that M2MФcould promote angiogenesis and improve the degree of skeletal muscle repair,which will guide the research and development of M2MФimplantation to improve skeletal muscle regeneration.
基金the financial supports by the National Natural Science Foundation of China(82060594)the Natural Science Foundation of Jiangxi Province,China(20202BAB205006)。
文摘The biological activity of plant polysaccharides can be enhanced by sulfated modification.In this study,the immunomodulatory effect of sulfated Cyclocarya paliurus polysaccharides(SCP3)on macrophages RAW264.7 and its potential molecular mechanism were investigated.Results showed that SCP3 at 25-100μg/m L increased viability and improved phagocytosis of RAW264.7 cells.Meanwhile,SCP3 could activate mitogen-activated protein kinase(MAPK)and nuclear factor kappa B(NF-κB)signaling pathways,which increased the phosphorylation of Erk1/2,JNK,p38 and NF-κB p65,promoting secretion of cytokines tumor necrosis factorα(TNF-α),interleukin 6(IL-6)and nitric oxide(NO)as well as the production of reactive oxygen species(ROS).In addition,Toll-like receptor 4(TLR4)receptor inhibitors were able to block the production of NO and TNF-αby SCP3-stimulated macrophages.Based on Western blot analysis and validation using specific inhibitors against MAPK and NF-κB signaling pathways,the results demonstrated that SCP3 induced macrophages activation and enhanced TNF-αand NO production via TLR4-mediated MAPK and NF-κB pathways.In summary,SCP3 has significant immunomodulatory potential.The underlying molecular mechanism was that SCP3 activates macrophages via TLR4 receptors to promote ROS production,which in turn activates the downstream MAPK/NF-κB signaling pathway and then increases the secretion levels of cytokines and NO.