According to the construction characteristic of RCC dam cast by layers, three-dimensional finite element relocating mesh method is developed to simulate construction process and compute temperature field. The computat...According to the construction characteristic of RCC dam cast by layers, three-dimensional finite element relocating mesh method is developed to simulate construction process and compute temperature field. The computation model of relocating mesh method is expatiated in detail; based on the thermodynamic properties of RCC materials, the feasibility and error of relocating mesh method are analyzed and demonstrated; The computation results in this article are verified by means of the temperature observation data of certain RCC gravity dam. The results show that the temperature field computed by three-dimensional finite element relocating mesh method can not only ensure the computation precision, but also improve the calculation efficiency greatly. This provides an effective method for simulating construction process and computing temperature field of RCC dam.展开更多
This study used the finite element method (FEM) to analyze the stress field and seepage field of a roller-compacted concrete (RCC) dam, with an upstream impervious layer constructed with different types of concret...This study used the finite element method (FEM) to analyze the stress field and seepage field of a roller-compacted concrete (RCC) dam, with an upstream impervious layer constructed with different types of concrete materials, including three-graded RCC, two-graded RCC, conven- tional vibrated concrete (CVC), and grout-enriched vibrated RCC (GEVR), corresponding to the design schemes S 1 through $4. It also evaluated the anti-seepage performance of the imperious layer in the four design schemes under the normal water level and flood-check level. Stress field analysis of a retaining section and discharge section shows that the maximum tensile stress occurs near the dam heel, the maximum compressive stress occurs near the dam toe, and the stress distributions in the four schemes can satisfy the stress control criteria. Seepage field analysis shows that the uplift pressure heads in schemes S3 and S4 descend rapidly in the anti-seepage region, and that the calculated results of daily seepage flow under the steady seepage condition in these two schemes are about 30%-50% lower than those in the other two schemes, demonstrating that CVC and GEVR show better anti-seepage performance. The results provide essential parameters such as the uplift pressure head and seelga^e flow for physical model tests and anti-seepage structure selection in RCC dams.展开更多
By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture t...By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.展开更多
Taking account of the fuzzy results of the seepage monitoring analysis of roller compacted concrete(RCC)dam and uncertainties of the individual indicator evaluation,the fuzzy matter-element model of seepage monitoring...Taking account of the fuzzy results of the seepage monitoring analysis of roller compacted concrete(RCC)dam and uncertainties of the individual indicator evaluation,the fuzzy matter-element model of seepage monitoring of RCC dam analysis has been established with the use of the fuzzy matter-element analysis theory and the concept of euclid approach degree.The use of entropy theory can calculate the weighting factor through the disorder utility values of the information reflected by the data itself,which can effectively avoid the problems of weight distribution and uncertainties of subjective judgments of the seepage monitoring analysis of roller compacted concrete dam.And further the example shows that the analysis of entropy-based fuzzy matter-element analysis model of the seepage monitoring of roller compacted concrete dam is in accordance with the actual situation,which verifies the effectiveness of the method.展开更多
The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the...The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the calculation formula of equivalent strength of crack director in the RCC arch dam, thus a simple and useful formula was reached. The study shows that the equivalent strength of crack directors increases with the increasing intensity of concrete, but the surplus rate of strength of crack directors section decreases with the increasing intensity of concrete and the distance between centers of adjacent crack directors, and that bilateral interval crack directors are more efficient in weakening the strength of section than unidirectional interval crack directors in the case of the same distance between adjacent crack director centers. A good design for crack directors of RCC arch dam is proposed via the rule.展开更多
In this paper, regarding the actual conditions of a roller compacted concrete dam, three-dimensional finite element relocating mesh method is utilized to simulate and calculate the temperature field of the RCC dam dur...In this paper, regarding the actual conditions of a roller compacted concrete dam, three-dimensional finite element relocating mesh method is utilized to simulate and calculate the temperature field of the RCC dam during the construction stage and operating period. The calculation is well consistent with the actual construction process, the thin-layer pouring process the pouring temperature and all kinds of external loads involved being taken into account, By comparing and analyzing of the impact of the cold wave on the dam stress, important references are provided for the RCCD design and the temperature control during construction.展开更多
文摘According to the construction characteristic of RCC dam cast by layers, three-dimensional finite element relocating mesh method is developed to simulate construction process and compute temperature field. The computation model of relocating mesh method is expatiated in detail; based on the thermodynamic properties of RCC materials, the feasibility and error of relocating mesh method are analyzed and demonstrated; The computation results in this article are verified by means of the temperature observation data of certain RCC gravity dam. The results show that the temperature field computed by three-dimensional finite element relocating mesh method can not only ensure the computation precision, but also improve the calculation efficiency greatly. This provides an effective method for simulating construction process and computing temperature field of RCC dam.
基金supported by the National Basic Research Program of China(Grant No.2013CB035903)the National Natural Science Foundation of China(Grants No.51321065 and 51209159)
文摘This study used the finite element method (FEM) to analyze the stress field and seepage field of a roller-compacted concrete (RCC) dam, with an upstream impervious layer constructed with different types of concrete materials, including three-graded RCC, two-graded RCC, conven- tional vibrated concrete (CVC), and grout-enriched vibrated RCC (GEVR), corresponding to the design schemes S 1 through $4. It also evaluated the anti-seepage performance of the imperious layer in the four design schemes under the normal water level and flood-check level. Stress field analysis of a retaining section and discharge section shows that the maximum tensile stress occurs near the dam heel, the maximum compressive stress occurs near the dam toe, and the stress distributions in the four schemes can satisfy the stress control criteria. Seepage field analysis shows that the uplift pressure heads in schemes S3 and S4 descend rapidly in the anti-seepage region, and that the calculated results of daily seepage flow under the steady seepage condition in these two schemes are about 30%-50% lower than those in the other two schemes, demonstrating that CVC and GEVR show better anti-seepage performance. The results provide essential parameters such as the uplift pressure head and seelga^e flow for physical model tests and anti-seepage structure selection in RCC dams.
文摘By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.
基金supported by the National Science and Technology Support Plan of China(Nos.2006BAC14B03,2008BAB29B06,2008BAB29B03)the Jiangsu Province 333Training High-Level Talents Projects(No.2017-B08037)the National Natural Science Foundation of China(Grant Nos.50539010,50539110,50809025,50539030-1-3)。
文摘Taking account of the fuzzy results of the seepage monitoring analysis of roller compacted concrete(RCC)dam and uncertainties of the individual indicator evaluation,the fuzzy matter-element model of seepage monitoring of RCC dam analysis has been established with the use of the fuzzy matter-element analysis theory and the concept of euclid approach degree.The use of entropy theory can calculate the weighting factor through the disorder utility values of the information reflected by the data itself,which can effectively avoid the problems of weight distribution and uncertainties of subjective judgments of the seepage monitoring analysis of roller compacted concrete dam.And further the example shows that the analysis of entropy-based fuzzy matter-element analysis model of the seepage monitoring of roller compacted concrete dam is in accordance with the actual situation,which verifies the effectiveness of the method.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50179002,50709013)Liaoning Province Dr. Fund(Grant No.20071025)
文摘The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the calculation formula of equivalent strength of crack director in the RCC arch dam, thus a simple and useful formula was reached. The study shows that the equivalent strength of crack directors increases with the increasing intensity of concrete, but the surplus rate of strength of crack directors section decreases with the increasing intensity of concrete and the distance between centers of adjacent crack directors, and that bilateral interval crack directors are more efficient in weakening the strength of section than unidirectional interval crack directors in the case of the same distance between adjacent crack director centers. A good design for crack directors of RCC arch dam is proposed via the rule.
文摘In this paper, regarding the actual conditions of a roller compacted concrete dam, three-dimensional finite element relocating mesh method is utilized to simulate and calculate the temperature field of the RCC dam during the construction stage and operating period. The calculation is well consistent with the actual construction process, the thin-layer pouring process the pouring temperature and all kinds of external loads involved being taken into account, By comparing and analyzing of the impact of the cold wave on the dam stress, important references are provided for the RCCD design and the temperature control during construction.