在盆栽条件下,研究调亏灌溉对小桐子幼树形态特征与水分利用的影响。设置2种调亏水平:重度亏缺W1(田间持水量的25%~45%)和轻度亏缺W2(田间持水量的45%~65%);3种亏水处理时间:D1(亏水120 d )、D2(亏水90 d )和D3(亏水...在盆栽条件下,研究调亏灌溉对小桐子幼树形态特征与水分利用的影响。设置2种调亏水平:重度亏缺W1(田间持水量的25%~45%)和轻度亏缺W2(田间持水量的45%~65%);3种亏水处理时间:D1(亏水120 d )、D2(亏水90 d )和D3(亏水60 d );CK为常规灌溉(田间持水量的65%~85%)。结果表明:亏水度对小桐子幼树的株高、茎粗、壮苗指数、叶面积、基茎截面积、干物质质量和水分利用效率的影响趋势表现为轻度调亏处理>重度调亏处理;对根冠比和胡伯尔值的影响趋势表现为:重度调亏处理>轻度调亏处理。亏水时间对小桐子幼树的株高、茎粗、壮苗指数、叶面积、基茎截面积、干物质质量和水分利用效率的影响趋势表现为60 d>90 d>120 d;对根冠比和胡伯尔值的影响趋势均表现为120 d>90 d>60 d。与正常灌水相比,轻度调亏60 d的处理节约灌溉用水11.2%,其叶干重和叶柄干重显著下降,根系、茎秆和总干重下降并不明显,而粗高比和根冠比显著提高,因此,灌溉水利用效率和壮苗指数显著增加7.8%和8.1%。可见,苗后期轻度亏水不仅具有明显的壮苗作用,而且促进水分利用效率显著增大。展开更多
Pelletization of hematite ore requires high fineness and very high induration temperature(~1325 ℃) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high red...Pelletization of hematite ore requires high fineness and very high induration temperature(~1325 ℃) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high reduction degradation index(RDI) during low temperature(500-650 ℃) reduction due to their volume expansion and lattice distortion. Noamundi(India) hematite ore contains very high Al2O3(2.3%) with adverse ratio of alumina to silica(~2) for which, it shows very high RDI. In this work, the acid pellets prepared from Noamundi ore fines of optimum Blaine fineness show good cold crushing strength(CCS). However, it shows very high RDI(77%). In order to reduce RDI, Mg O in form of two different gangue-containing fluxes, such as pyroxenite and olivine in varying quantities has been added. The optimum requirement and performance of these fluxes has been examined and compared. Both pyroxenite and olivine fluxed pellets show significant lowering of RDI(26% and 23%, respectively) and improvement of other properties, viz CCS, swelling indices etc with good reducibility(70%-77%). Finally, a good quality acidic hematite pellet was developed from high-alumina ore without using any lime which is very important charge material in combination of basic sinter in blast furnace.展开更多
In order to reduce the materials cost of COREX ironmaking process,sinter has been introduced into the composite burden in China.This work explored the reducing process of sinter in COREX shaft furnace to clarify its r...In order to reduce the materials cost of COREX ironmaking process,sinter has been introduced into the composite burden in China.This work explored the reducing process of sinter in COREX shaft furnace to clarify its reduction properties change and then the effect of sinter proportion on metallurgical performance of composite burden was investigated.The results show that the reducing process of sinter in COREX shaft furnace was basically same with that in blast furnace but sinter seems like breaking faster.Under reducing condition simulated COREX shaft furnace,sinter possessed the worst reduction degradation index(RDI)and undifferentiated reduction index(RI)compared with pellet and iron ore lumps.Macroscopic and microscopic mineralogy changes indicated that sinter presents integral cracking while pellet and lump ore present surface cracking,and no simple congruent relationship exists between cracks of the burden and its ultimate reduction degradation performance.The existence of partial metallurgical performance superposition between composite and single ferrous burden was confirmed.RDI_(+6.3)≥70%and RDI_(+3.15)≥80%were speculated as essential requirements for the composite burden containing sinter in COREX shaft furnace.展开更多
文摘在盆栽条件下,研究调亏灌溉对小桐子幼树形态特征与水分利用的影响。设置2种调亏水平:重度亏缺W1(田间持水量的25%~45%)和轻度亏缺W2(田间持水量的45%~65%);3种亏水处理时间:D1(亏水120 d )、D2(亏水90 d )和D3(亏水60 d );CK为常规灌溉(田间持水量的65%~85%)。结果表明:亏水度对小桐子幼树的株高、茎粗、壮苗指数、叶面积、基茎截面积、干物质质量和水分利用效率的影响趋势表现为轻度调亏处理>重度调亏处理;对根冠比和胡伯尔值的影响趋势表现为:重度调亏处理>轻度调亏处理。亏水时间对小桐子幼树的株高、茎粗、壮苗指数、叶面积、基茎截面积、干物质质量和水分利用效率的影响趋势表现为60 d>90 d>120 d;对根冠比和胡伯尔值的影响趋势均表现为120 d>90 d>60 d。与正常灌水相比,轻度调亏60 d的处理节约灌溉用水11.2%,其叶干重和叶柄干重显著下降,根系、茎秆和总干重下降并不明显,而粗高比和根冠比显著提高,因此,灌溉水利用效率和壮苗指数显著增加7.8%和8.1%。可见,苗后期轻度亏水不仅具有明显的壮苗作用,而且促进水分利用效率显著增大。
文摘Pelletization of hematite ore requires high fineness and very high induration temperature(~1325 ℃) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high reduction degradation index(RDI) during low temperature(500-650 ℃) reduction due to their volume expansion and lattice distortion. Noamundi(India) hematite ore contains very high Al2O3(2.3%) with adverse ratio of alumina to silica(~2) for which, it shows very high RDI. In this work, the acid pellets prepared from Noamundi ore fines of optimum Blaine fineness show good cold crushing strength(CCS). However, it shows very high RDI(77%). In order to reduce RDI, Mg O in form of two different gangue-containing fluxes, such as pyroxenite and olivine in varying quantities has been added. The optimum requirement and performance of these fluxes has been examined and compared. Both pyroxenite and olivine fluxed pellets show significant lowering of RDI(26% and 23%, respectively) and improvement of other properties, viz CCS, swelling indices etc with good reducibility(70%-77%). Finally, a good quality acidic hematite pellet was developed from high-alumina ore without using any lime which is very important charge material in combination of basic sinter in blast furnace.
基金Project(2019JJ51007)supported by the Natural Science Foundation of Hunan Province,China。
文摘In order to reduce the materials cost of COREX ironmaking process,sinter has been introduced into the composite burden in China.This work explored the reducing process of sinter in COREX shaft furnace to clarify its reduction properties change and then the effect of sinter proportion on metallurgical performance of composite burden was investigated.The results show that the reducing process of sinter in COREX shaft furnace was basically same with that in blast furnace but sinter seems like breaking faster.Under reducing condition simulated COREX shaft furnace,sinter possessed the worst reduction degradation index(RDI)and undifferentiated reduction index(RI)compared with pellet and iron ore lumps.Macroscopic and microscopic mineralogy changes indicated that sinter presents integral cracking while pellet and lump ore present surface cracking,and no simple congruent relationship exists between cracks of the burden and its ultimate reduction degradation performance.The existence of partial metallurgical performance superposition between composite and single ferrous burden was confirmed.RDI_(+6.3)≥70%and RDI_(+3.15)≥80%were speculated as essential requirements for the composite burden containing sinter in COREX shaft furnace.