近似串匹配技术在网络信息搜索、数字图书馆、模式识别、文本挖掘、IP路由查找、网络入侵检测、生物信息学、音乐研究计算等领域具有广泛的应用.基于CREW-PRAM(parallel random access machine with concurrent read and exclusive wri...近似串匹配技术在网络信息搜索、数字图书馆、模式识别、文本挖掘、IP路由查找、网络入侵检测、生物信息学、音乐研究计算等领域具有广泛的应用.基于CREW-PRAM(parallel random access machine with concurrent read and exclusive write)模型,采用波前式并行推进的方法直接计算编辑距离矩阵D,设计了一个允许k-差别的近似串匹配动态规划并行算法,该算法使用(m+1)个处理器,时间复杂度为O(n),算法理论上达到线性加速;采取水平和斜向双并行计算编辑距离矩阵D的方法,设计了一个使用a(m+1)个处理器和O(n/a+m)时间的、可伸缩的、允许k-差别的近似串匹配动态规划并行算法,+<11mna.基于分治策略,通过灵活拆分总线和合并子总线动态重构光总线系统,并充分利用光总线的消息播送技术和并行计算前缀和的方法,实现了汉明距离的并行计算,设计了两个基于LARPBS(linear arrays with reconfigurable pipelined bus system)模型的通信高效、可扩放的允许k-误配的近似串匹配并行算法,其中一个算法使用n个处理器,时间为O(m);另一个为常数时间算法,使用mn个处理器.展开更多
针对目前数据中心的资源低效利用问题,提出了一种基于资源消耗特征匹配的虚拟机放置算法VMP-RUFM(virtual machines placement algorithm based on resource utilization feature-matching)。算法在虚拟机应用的性能表现和访问模式两个...针对目前数据中心的资源低效利用问题,提出了一种基于资源消耗特征匹配的虚拟机放置算法VMP-RUFM(virtual machines placement algorithm based on resource utilization feature-matching)。算法在虚拟机应用的性能表现和访问模式两个层面上,建立虚拟机资源特征模型,进而选择资源消耗特征与物理机资源配置相匹配的虚拟机集合。实验结果表明,该算法对满足条件的虚拟机进行关联后,能够显著优化虚拟机整体资源消耗和对应物理机资源配置的匹配程度。展开更多
文摘近似串匹配技术在网络信息搜索、数字图书馆、模式识别、文本挖掘、IP路由查找、网络入侵检测、生物信息学、音乐研究计算等领域具有广泛的应用.基于CREW-PRAM(parallel random access machine with concurrent read and exclusive write)模型,采用波前式并行推进的方法直接计算编辑距离矩阵D,设计了一个允许k-差别的近似串匹配动态规划并行算法,该算法使用(m+1)个处理器,时间复杂度为O(n),算法理论上达到线性加速;采取水平和斜向双并行计算编辑距离矩阵D的方法,设计了一个使用a(m+1)个处理器和O(n/a+m)时间的、可伸缩的、允许k-差别的近似串匹配动态规划并行算法,+<11mna.基于分治策略,通过灵活拆分总线和合并子总线动态重构光总线系统,并充分利用光总线的消息播送技术和并行计算前缀和的方法,实现了汉明距离的并行计算,设计了两个基于LARPBS(linear arrays with reconfigurable pipelined bus system)模型的通信高效、可扩放的允许k-误配的近似串匹配并行算法,其中一个算法使用n个处理器,时间为O(m);另一个为常数时间算法,使用mn个处理器.
文摘针对目前数据中心的资源低效利用问题,提出了一种基于资源消耗特征匹配的虚拟机放置算法VMP-RUFM(virtual machines placement algorithm based on resource utilization feature-matching)。算法在虚拟机应用的性能表现和访问模式两个层面上,建立虚拟机资源特征模型,进而选择资源消耗特征与物理机资源配置相匹配的虚拟机集合。实验结果表明,该算法对满足条件的虚拟机进行关联后,能够显著优化虚拟机整体资源消耗和对应物理机资源配置的匹配程度。