The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by...A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by an internal heat exchanger(IHX).The ejector is introduced into the baseline cycle in order to mitigate the throttling process losses and increase the compressor suction pressure.Moreover,the IHX has the structure of a concentric counter-flow type heat exchanger and is intentionally used to ensure that the fluid at the compressor inlet is vapor.To assess accurately the influence of the IHX on the DEERC performance,a mathematical model is derived in the frame of the dominant one-dimensional theory for ejectors.The model also accounts for the friction effect in the ejector mixing section.The equations of this model are solved using an Engineering Equation Solver(EES)for different fluids.These are:R134a as baseline fluid and other environment friendly refrigerants used for comparison,namely,R1234yf,R1234ze,R600,R600a,R290,R717 and R1270.The simulation results show that the DEERC with an IHX can achieve COP(the coefficient of performance)improvements from 5.2 until 10%.展开更多
Water and ethanol were selected as refrigerants, 13x molecular sieve, silica gel, activated carbon and adsorbents NA and NB prepared by authors were selected as adsorbents, and the performance of adsorption working pa...Water and ethanol were selected as refrigerants, 13x molecular sieve, silica gel, activated carbon and adsorbents NA and NB prepared by authors were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration system was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance parameters of adsorption refrigerat...展开更多
In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis ...In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis and calculations on two combination ways by adding the compressor in the high-pressure area and in the low-pressure area are conducted respectively.The effects of several factors including the evaporation temperature Te heat-source temperature Th as well as the cooling water temperature Tw on the equivalent heat consumption in compression qCW heat consumption in absorption qG and the system coefficient of performance COP are analyzed under the two combination configurations.The results show that the effect of the equivalent heat consumption in compression on the COP is less than that of the heat consumption in absorption.Besides the compressor set in the high-pressure area uses more energy than that in the low-pressure area. Moreover the compressor in the low-pressure area is superior to that in the high-pressure area with respect to the COP. Under the given intermediate pressure there is an optimum heat-source temperature corresponding to the maximum COP of the AWA/CCR cycle.展开更多
A study is conducted on the performances of a solar powered continuous-adsorption refrigerator considering two particular days as references cases,namely,the summer solstice(June 21st)and the autumn equinox(September ...A study is conducted on the performances of a solar powered continuous-adsorption refrigerator considering two particular days as references cases,namely,the summer solstice(June 21st)and the autumn equinox(September 21st).The cooling capacity,system performance coefficient and the daily rate of available cooling energy are assessed.The main goal is to compare the performances of a solar adsorption chiller equipped with a hot water tank(HWT)with an equivalent system relying on solar collectors with no heat storage module.The daily cooling rates for the solar refrigerator are found to be 102.4 kWh and 74.3 kWh,respectively,on June 21st and on September 21st,using a total collector’s area of 43.47 m2.The corresponding values for the adsorption chiller equipped with a hot water tank of 2 m3(and using a total collector’s area of 72.45 m2),are 127.1 kWh and 106.13 kWh,respectively.展开更多
A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle fo...A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle for reclaiming some portion of absorption heat.As a consequence of raised temperature at the inlet,the strong solution partially boils at the outlet of the solution heat exchanger,and diminishes the thermal heat consumption of the heat source.The calculation results show that the coefficient of performance(COP)of this modified cycle is about 28.3% higher than that of the traditional cycle under typical conditions;while the required heat transfer area of the total heat exchangers of the cycle is somewhat less than that of the traditional one.The capacity of refrigeration with the new absorption cycle is more than doubled in contrast to the adsorption scheme with an identical configuration.It is sufficient to supply a fishing boat the chilling capacity for preservation of fishing products with the modified cycle chiller driven by its diesel engine exhaust.展开更多
With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat tr...With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat transfer caused by finite temperature differences, the heat leak between external heat reservoirs and the internal dissipation of working fluids. EGM is taken as an objective function for the optimization. The objective function and design parameters are obtained. Optimal performance curves are presented by thermal and electronic parameters. Effects of these parameters on general and optimal performances are investigated. Results are helpful in determining optimal design conditions in real thermoelectric refrigeration systems.展开更多
An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variati...An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS.展开更多
Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed ...Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed by FT-IR. The results of the characterization show that the corrosion resistance of the coating with 1.5 mmol/L cerium ion (III) gains significant improvement, in which the colour retention time of CuSO4 extends to 500 s, the anti-acid and alkali corrosion rates reduce by 67% and 70% compared with the blank one, respectively, and the salt spray tests also show good corrosion resistance. The electrochemical tests demonstrate that the self-corrosion current density and potential of the sample with hybrid coating are about 2.877×10?7 A/cm2 and?0.550 V, respectively. The metallographic and SEM images show that the hybrid coating is uniform and dense, and the EDS analysis confirms that the coating is mainly composed of Al, Si and Ce elements.展开更多
A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investi...A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investigated using a nitrogen adsorption method. The water adsorption isotherms were obtained by high vacuum gravimetric method, the desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer, and the adsorption refrigeration performance of shaped MIL-101-water working pair was studied on the simulation device of adsorption refrigeration cycle system. The results indicate that an apparent hysteresis loop ap-pears in the nitrogen adsorption/desorption isotherms when the forming pressure is 10 MPa. The equilibrium ad-sorption capacity of water is up to 0.95 kg·kg^-1 at the forming pressure of 3 MPa (MIL-101-3). The desorption peak temperature of water on MIL-101-3 is 82℃, which is 7 ℃ lower than that of silica gel, and the desorption temperature is no more than 100 ℃. At the evaporation temperature of 10 ℃, the refrigeration capacity of MIL-101-3-water is 1059 kJ·kg^-1, which is 2.24 times higher than that of silica gel-water working pair. Thus MIL-101-water working pair presents an excellent adsorption refrigeration performance.展开更多
This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated ...This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated using the EOS of PR equation of state, and the results are discussed. The theoretical calculations indicate that refrigerating quality can be improved if the binary mixtures evaporate just in the low temperature region. The character of the rejecter to compress two phase medium supports the possibility of this kind of cycle.展开更多
Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of s...Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of semiconductor refrigeration and establishes a heat transfer model. Semiconductor cooler on piping refrigeration is simulated,and influence of the parameters on the outlet temperature,such as pipe pressure difference of inlet and outlet,pipe length,pipe radius,are gotten,and then hydraulic tank semiconductor refrigeration system is proposed. The semiconductor refrigeration system can control temperature at 37 ± 1°C.展开更多
The recent progress of magnetic refrigeration technique at room temperature, especially in magnetic refrigerant materials with respect to Gd-Si-Ge, La-Fe-Si, Mn-Fe-P-As which has GMCE was reported. Also the recent pro...The recent progress of magnetic refrigeration technique at room temperature, especially in magnetic refrigerant materials with respect to Gd-Si-Ge, La-Fe-Si, Mn-Fe-P-As which has GMCE was reported. Also the recent progress in magnetic refrigerator design was reviewed.展开更多
Refrigeration coefficient, ε, is usually calculated by using the First Law of Thermodynamics. In this paper, a new derivation process is introduced through the combination of the Second Law of Thermodynamics with the...Refrigeration coefficient, ε, is usually calculated by using the First Law of Thermodynamics. In this paper, a new derivation process is introduced through the combination of the Second Law of Thermodynamics with the First Law of Thermodynamics. As a result, two new calculation equations for refrigeration coefficient are proposed. One equation is equivalent to the common method, but its form is a little complicated for real calculation. Another equation is the further simplification, and can be used to calculate the refrigeration coefficient instead of common method with a oermit error.展开更多
The performance parameters of vapor compression refrigeration units that used the refrigerant R-404A were studied by developing a computer simulation algorithm. The various performance parameters investigated per one ...The performance parameters of vapor compression refrigeration units that used the refrigerant R-404A were studied by developing a computer simulation algorithm. The various performance parameters investigated per one kilowatt of refrigeration capacity, such as the mass flow rate, the compressor power consumption, the condenser heat rejection rate, the compressor exit temperature and the coefficient of performance. Two refrigeration cycles were tested under various evaporating and condensing temperatures: the standard cycle and the ideal cycle with superheating and sub-cooling. The results of the present work reveal that the compressor power variation over the evaporating temperature range from –10℃ to 15℃at Tc = 40℃ is decreased by 38.8% for standard cycle and by 43.8% for ideal cycle. The compressor power variation over the condensing temperature range from 30℃ to 50℃ at Te = 10℃ is increased by 122% for standard cycle and by 54.5% for ideal cycle. On the other hand, the COP for the ideal cycle with 5℃ superheating and sub-cooling is approximately 25% higher than that of the standard cycle at Te = 10℃ and Tc = 40℃ for the refrigerant R-404A.展开更多
Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrige...Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrigerants in most cooling devices, and for many cooling application the Nd2Fe14B permanent magnets are employed as the source of the magnetic field. The status of the near room temperature magnetic cooling was reviewed.展开更多
The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression...The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression ratio.Moreover,the following influential factors have been taken into account:evaporation temperature,condensation temperature and compressor suction-exhaust pressure ratio for different opening conditions of the compressor.The following quantities have been selected as the unit performance measurement indicators:refrigeration capacity,energy efficiency ratio(COP),compressor power consumption,and refrigerant flow rate.The experimental results indicate that the system refrigeration capacity and COP decrease with a decrease in evaporation temperature,increase of condensation temperature,and increase in pressure ratio.The refrigerant flow rate increases with the increase in evaporation temperature,decrease in condensing temperature and increase in pressure ratio.The compressor power consumption increases with the increase in condensing temperature and increase in pressure ratio,but is not significantly affected by the evaporation temperature.展开更多
Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of ...Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of infinite volume of phase separator, ACR system with one phase separator is simulated in this paper. The variation of refrigerant composition under different valves opening is obtained. A related experimental system is set up to verify the variation. The result shows that when the valve opening connected to the evaporator increases or the valve opening under the phase separator decreases, the low-boiling component concentration of the working mixture passing through the compressor and condenser increases, while the high-boiling component concentration decreases. Furthermore, the variations of condensation pressure and evaporation pressure under different valves opening are also observed. This paper is helpful to deepen the understanding of ACR system.展开更多
The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analy...The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.展开更多
A model of quantum thermoacoustic refrigeration micro-cycle(QTARMC)is established in which heat leakage is considered.A single particle contained in a one-dimensional harmonic potential well is studied,and the system ...A model of quantum thermoacoustic refrigeration micro-cycle(QTARMC)is established in which heat leakage is considered.A single particle contained in a one-dimensional harmonic potential well is studied,and the system consists of countless replicas.Each particle is confined in its own potential well,whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions.Based on the Schrodinger equation,the expressions of coefficient of performance(COP)and cooling rate for the refrigerator are obtained.Effects of heat leakage on the optimal performance are discussed.The optimal performance region of the refrigeration cycle is obtained by the using ofΩobjective function.The results obtained can enrich the thermoacoustic theory and expand the application of quantum thermodynamics.展开更多
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
文摘A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by an internal heat exchanger(IHX).The ejector is introduced into the baseline cycle in order to mitigate the throttling process losses and increase the compressor suction pressure.Moreover,the IHX has the structure of a concentric counter-flow type heat exchanger and is intentionally used to ensure that the fluid at the compressor inlet is vapor.To assess accurately the influence of the IHX on the DEERC performance,a mathematical model is derived in the frame of the dominant one-dimensional theory for ejectors.The model also accounts for the friction effect in the ejector mixing section.The equations of this model are solved using an Engineering Equation Solver(EES)for different fluids.These are:R134a as baseline fluid and other environment friendly refrigerants used for comparison,namely,R1234yf,R1234ze,R600,R600a,R290,R717 and R1270.The simulation results show that the DEERC with an IHX can achieve COP(the coefficient of performance)improvements from 5.2 until 10%.
文摘Water and ethanol were selected as refrigerants, 13x molecular sieve, silica gel, activated carbon and adsorbents NA and NB prepared by authors were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration system was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance parameters of adsorption refrigerat...
基金The National Natural Science Foundation of China(No.51176029)
文摘In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis and calculations on two combination ways by adding the compressor in the high-pressure area and in the low-pressure area are conducted respectively.The effects of several factors including the evaporation temperature Te heat-source temperature Th as well as the cooling water temperature Tw on the equivalent heat consumption in compression qCW heat consumption in absorption qG and the system coefficient of performance COP are analyzed under the two combination configurations.The results show that the effect of the equivalent heat consumption in compression on the COP is less than that of the heat consumption in absorption.Besides the compressor set in the high-pressure area uses more energy than that in the low-pressure area. Moreover the compressor in the low-pressure area is superior to that in the high-pressure area with respect to the COP. Under the given intermediate pressure there is an optimum heat-source temperature corresponding to the maximum COP of the AWA/CCR cycle.
基金supported by Campus France in the frame of the PHC-Maghreb 19Mag29 Project.We would like to thank also our Ministries and research units。
文摘A study is conducted on the performances of a solar powered continuous-adsorption refrigerator considering two particular days as references cases,namely,the summer solstice(June 21st)and the autumn equinox(September 21st).The cooling capacity,system performance coefficient and the daily rate of available cooling energy are assessed.The main goal is to compare the performances of a solar adsorption chiller equipped with a hot water tank(HWT)with an equivalent system relying on solar collectors with no heat storage module.The daily cooling rates for the solar refrigerator are found to be 102.4 kWh and 74.3 kWh,respectively,on June 21st and on September 21st,using a total collector’s area of 43.47 m2.The corresponding values for the adsorption chiller equipped with a hot water tank of 2 m3(and using a total collector’s area of 72.45 m2),are 127.1 kWh and 106.13 kWh,respectively.
基金The National Natural Science Foundation of China(No.50776016)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B02)
文摘A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle for reclaiming some portion of absorption heat.As a consequence of raised temperature at the inlet,the strong solution partially boils at the outlet of the solution heat exchanger,and diminishes the thermal heat consumption of the heat source.The calculation results show that the coefficient of performance(COP)of this modified cycle is about 28.3% higher than that of the traditional cycle under typical conditions;while the required heat transfer area of the total heat exchangers of the cycle is somewhat less than that of the traditional one.The capacity of refrigeration with the new absorption cycle is more than doubled in contrast to the adsorption scheme with an identical configuration.It is sufficient to supply a fishing boat the chilling capacity for preservation of fishing products with the modified cycle chiller driven by its diesel engine exhaust.
文摘With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat transfer caused by finite temperature differences, the heat leak between external heat reservoirs and the internal dissipation of working fluids. EGM is taken as an objective function for the optimization. The objective function and design parameters are obtained. Optimal performance curves are presented by thermal and electronic parameters. Effects of these parameters on general and optimal performances are investigated. Results are helpful in determining optimal design conditions in real thermoelectric refrigeration systems.
文摘An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS.
基金Project(51404038)supported by the National Natural Science Foundation of China
文摘Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed by FT-IR. The results of the characterization show that the corrosion resistance of the coating with 1.5 mmol/L cerium ion (III) gains significant improvement, in which the colour retention time of CuSO4 extends to 500 s, the anti-acid and alkali corrosion rates reduce by 67% and 70% compared with the blank one, respectively, and the salt spray tests also show good corrosion resistance. The electrochemical tests demonstrate that the self-corrosion current density and potential of the sample with hybrid coating are about 2.877×10?7 A/cm2 and?0.550 V, respectively. The metallographic and SEM images show that the hybrid coating is uniform and dense, and the EDS analysis confirms that the coating is mainly composed of Al, Si and Ce elements.
文摘A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investigated using a nitrogen adsorption method. The water adsorption isotherms were obtained by high vacuum gravimetric method, the desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer, and the adsorption refrigeration performance of shaped MIL-101-water working pair was studied on the simulation device of adsorption refrigeration cycle system. The results indicate that an apparent hysteresis loop ap-pears in the nitrogen adsorption/desorption isotherms when the forming pressure is 10 MPa. The equilibrium ad-sorption capacity of water is up to 0.95 kg·kg^-1 at the forming pressure of 3 MPa (MIL-101-3). The desorption peak temperature of water on MIL-101-3 is 82℃, which is 7 ℃ lower than that of silica gel, and the desorption temperature is no more than 100 ℃. At the evaporation temperature of 10 ℃, the refrigeration capacity of MIL-101-3-water is 1059 kJ·kg^-1, which is 2.24 times higher than that of silica gel-water working pair. Thus MIL-101-water working pair presents an excellent adsorption refrigeration performance.
文摘This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated using the EOS of PR equation of state, and the results are discussed. The theoretical calculations indicate that refrigerating quality can be improved if the binary mixtures evaporate just in the low temperature region. The character of the rejecter to compress two phase medium supports the possibility of this kind of cycle.
基金Supported by the National Natural Science Foundation of China(No.51175448,51405424)
文摘Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of semiconductor refrigeration and establishes a heat transfer model. Semiconductor cooler on piping refrigeration is simulated,and influence of the parameters on the outlet temperature,such as pipe pressure difference of inlet and outlet,pipe length,pipe radius,are gotten,and then hydraulic tank semiconductor refrigeration system is proposed. The semiconductor refrigeration system can control temperature at 37 ± 1°C.
文摘The recent progress of magnetic refrigeration technique at room temperature, especially in magnetic refrigerant materials with respect to Gd-Si-Ge, La-Fe-Si, Mn-Fe-P-As which has GMCE was reported. Also the recent progress in magnetic refrigerator design was reviewed.
基金Supported by Shanghai Leading Academic Displine Project(No.B604)
文摘Refrigeration coefficient, ε, is usually calculated by using the First Law of Thermodynamics. In this paper, a new derivation process is introduced through the combination of the Second Law of Thermodynamics with the First Law of Thermodynamics. As a result, two new calculation equations for refrigeration coefficient are proposed. One equation is equivalent to the common method, but its form is a little complicated for real calculation. Another equation is the further simplification, and can be used to calculate the refrigeration coefficient instead of common method with a oermit error.
文摘The performance parameters of vapor compression refrigeration units that used the refrigerant R-404A were studied by developing a computer simulation algorithm. The various performance parameters investigated per one kilowatt of refrigeration capacity, such as the mass flow rate, the compressor power consumption, the condenser heat rejection rate, the compressor exit temperature and the coefficient of performance. Two refrigeration cycles were tested under various evaporating and condensing temperatures: the standard cycle and the ideal cycle with superheating and sub-cooling. The results of the present work reveal that the compressor power variation over the evaporating temperature range from –10℃ to 15℃at Tc = 40℃ is decreased by 38.8% for standard cycle and by 43.8% for ideal cycle. The compressor power variation over the condensing temperature range from 30℃ to 50℃ at Te = 10℃ is increased by 122% for standard cycle and by 54.5% for ideal cycle. On the other hand, the COP for the ideal cycle with 5℃ superheating and sub-cooling is approximately 25% higher than that of the standard cycle at Te = 10℃ and Tc = 40℃ for the refrigerant R-404A.
基金Project supported bythe U.S .Department of Energy ,Office of Basic Energy Sciences , Materials Science and Engineering Division and Astronautics Corporation of America , Milwaukee , Wisconsin
文摘Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrigerants in most cooling devices, and for many cooling application the Nd2Fe14B permanent magnets are employed as the source of the magnetic field. The status of the near room temperature magnetic cooling was reviewed.
基金supported by the National Natural Science Foundation of China(No.41877251)the Key project of Natural Science Foundation of Tianjin City(No.6JCZDJC39000).
文摘The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression ratio.Moreover,the following influential factors have been taken into account:evaporation temperature,condensation temperature and compressor suction-exhaust pressure ratio for different opening conditions of the compressor.The following quantities have been selected as the unit performance measurement indicators:refrigeration capacity,energy efficiency ratio(COP),compressor power consumption,and refrigerant flow rate.The experimental results indicate that the system refrigeration capacity and COP decrease with a decrease in evaporation temperature,increase of condensation temperature,and increase in pressure ratio.The refrigerant flow rate increases with the increase in evaporation temperature,decrease in condensing temperature and increase in pressure ratio.The compressor power consumption increases with the increase in condensing temperature and increase in pressure ratio,but is not significantly affected by the evaporation temperature.
基金Supported by the China Postdoctoral Science Foundation(2014M552195)the State Key Laboratory Foundation of Subtropical Building,South China University of Technology(2013ZC13)the Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization,South China University of Technology(2013A061401005)
文摘Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of infinite volume of phase separator, ACR system with one phase separator is simulated in this paper. The variation of refrigerant composition under different valves opening is obtained. A related experimental system is set up to verify the variation. The result shows that when the valve opening connected to the evaporator increases or the valve opening under the phase separator decreases, the low-boiling component concentration of the working mixture passing through the compressor and condenser increases, while the high-boiling component concentration decreases. Furthermore, the variations of condensation pressure and evaporation pressure under different valves opening are also observed. This paper is helpful to deepen the understanding of ACR system.
基金Xi'an Polytechnic University Graduate Innovational Foundation(chx080608)
文摘The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.
基金Project(51176143)supported by the National Natural Science Foundation of ChinaProject(K201919)supported by the Scientific Research Foundation of Wuhan Institute of TechnologyChina。
文摘A model of quantum thermoacoustic refrigeration micro-cycle(QTARMC)is established in which heat leakage is considered.A single particle contained in a one-dimensional harmonic potential well is studied,and the system consists of countless replicas.Each particle is confined in its own potential well,whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions.Based on the Schrodinger equation,the expressions of coefficient of performance(COP)and cooling rate for the refrigerator are obtained.Effects of heat leakage on the optimal performance are discussed.The optimal performance region of the refrigeration cycle is obtained by the using ofΩobjective function.The results obtained can enrich the thermoacoustic theory and expand the application of quantum thermodynamics.