Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl...Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.展开更多
Under the background of complex international situation,how to build the special geo-economic space of China-Russia bor-der lies in strengthening their foreign trade resilience against external shocks.Based on empiric...Under the background of complex international situation,how to build the special geo-economic space of China-Russia bor-der lies in strengthening their foreign trade resilience against external shocks.Based on empirical evidence from ten prefecture-level China-Russia border regions in Northeast China,this paper analyzed the spatiotemporal evolution of foreign trade resilience under different shocks.Furthermore,through the Panel Regression model,the mechanism of the industrial structure on the foreign trade resilience in contraction period and expansion period was discussed.The results showed that:1)from 2004 to 2021,foreign trade in China-Russia border regions experienced five phases.The overall foreign trade resilience was higher than expected,showing a rising volatility trend,but there was significant spatial heterogeneity in the ability of cities to cope with shocks.2)Highly specialized clusters were mainly concentrated in Yichun,Heihe and Da Hinggan Ling Prefecture,while Mudanjiang and Yanbian performed better in related and unrelated diversification.3)In different stages of economic system evolution,the response mode,degree and result of border foreign trade resilience to regional industrial structure showed obvious stage characteristics.During the contraction period,related diversification was more conducive to improving the resistance through risk spillovers.During the expansion period,specialization played a more significant role in improving regional resilience through self-reinforcing effect.These results are beneficial for expanding the resilience theory,ensuring border economic security and optimizing border industrial investment layout.展开更多
Urbanization often changes bird species richness and affects the functional diversity.Therefore,understanding these changes helps city planners improve green space design and land use planning.Our study used multiple ...Urbanization often changes bird species richness and affects the functional diversity.Therefore,understanding these changes helps city planners improve green space design and land use planning.Our study used multiple datasets to explore the effects of land-scape patterns and natural environments on the functional diversity of birds in urban parks and campuses in the eastern and northwest-ern regions of China.Firstly,we used the data to calculate birds of the functional richness(FRic),functional evenness(FEve),and functional divergence(FDiv)of 68 urban spaces in the eastern and northwestern regions of China.Further,we established generalized linear models of natural factors,human factors,and functional diversity.Results showed more bird species with unique traits were in the north-western region.This may be because the earlier urbanization in the eastern region filtered out urban-sensitive species,leaving behind urban adapters.Moreover,we found that the fractal dimension index was the most significant positive factor of FRic in the eastern region but the most significant negative factor of FDiv.Elevation was the most significant negative influence factor of FEve in the eastern region,but it was the most potent positive influence factor of FRic in the northwestern region.Population density had a significant positive effect on FDiv in the northwestern region.However,green space areas significantly negatively impacted FEve in the northwestern region.In addition,birds in parks in both regions had more functional traits than those on campuses,possibly because of the larger green space in parks,which may contain more fragments of native vegetation and reduce human interference.Our study suggests that preserving more original vegetation and reducing human disturbance in cities can increase the functional diversity of urban birds and im-prove urban ecosystem functions.展开更多
Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth t...Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions.展开更多
Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of wate...Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development.展开更多
This paper explains various factors that contribute to saltwater intrusion, including overexploitation of freshwater resources and climate change as well as the different techniques essential for effective saltwater i...This paper explains various factors that contribute to saltwater intrusion, including overexploitation of freshwater resources and climate change as well as the different techniques essential for effective saltwater intrusion management. The impact of saltwater intrusion along coastal regions and its impact on the environment, hydrogeology and groundwater contamination. It suggests potential solutions to mitigate the impact of saltwater intrusion, including effective water management and techniques for managing SWI. The application of A.I (assessment index) serves as a guideline to correctly identify wells with SWI ranging from no intrusion, slight intrusion and strong intrusion. The challenges of saltwater intrusion in Lagos and the salinization of wells were investigated using the hydro-chemical parameters. The study identifies four wells (“AA”, “CMS”, “OBA” and “VIL”) as having high electric conductivities, indicating saline water intrusion, while other wells (“EBM”, “IKJ, and “IKO”) with lower electric conductivities, indicate little or no salt-water intrusion, and “AJ” well shows slight intrusion. The elevation of the wells also played a vital role in the SWI across coastal regions of Lagos. The study recommends continuous monitoring of coastal wells to help sustain and reduce saline intrusion. The findings of the study are important for policymakers, researchers, and practitioners who are interested in addressing the challenges of saltwater intrusion along coastal regions. We assessed the SWI across the eight (8) wells using the Assessment Index to identify wells with SWI. Wells in “CMS” and “VIL” has strong intrusions. A proposed classification system based on specific ion ratios categorizes water quality from good (+) to highly (-) contaminated (refer to Table 4). These findings underscore the need for attention and effective management strategies to address groundwater unsuitability for various purposes.展开更多
The traditional governance model and hierarchical structure in China’s ethnic minority regions are inadequate for advancing farmers’income and modernizing rural governance.Moreover,these traditional structures have ...The traditional governance model and hierarchical structure in China’s ethnic minority regions are inadequate for advancing farmers’income and modernizing rural governance.Moreover,these traditional structures have resulted in governance challenges including unequal allocation of rural resources,absence of villagers’agency,and lack of resource transparency.This study delves into the systematic structure of the“rural governance system in ethnic minority areas”.This study samples advanced ethnic minority township governance models from seven provinces,including Guangxi,Qinghai,and the Tibet Autonomous Region in China,and employs Grounded Theory to encode and analyze sub-elements within their governance systems.Subsequently,it investigates the construction logic of a novel rural governance system.(1)The research reveals that primary-level Party organization play a pivotal role in connecting bilateral delegated agency relationships,thereby establishing a mutually cooperative“chain-like”structure in village governance systems within ethnic minority areas.(2)The study identifies two cooperative production paths of the new rural governance in ethnic minority areas:top-down field-oriented party-government integrated governance and bottom-up legalized multi-subject collaborative governance.(3)By employing“integration means-bilateral mobilization”as the mechanism for momentum adjustment and relying on social autonomy,grassroots party organizations shape the momentum adjustment of the new rural governance system in ethnic minority areas.They do so by leveraging both formal and informal governance methods within this framework.Consequently,this study offers pertinent policy recommendations aimed at resolving the challenges of interest coordination and uneven development in ethnic minority areas amidst China’s governance modernization efforts.展开更多
Abrupt temperature volatility has detrimental effects on daily activities,macroeconomic growth,and human health.Predicting abrupt temperature volatility and thus diminishing its negative impacts can be achieved by exp...Abrupt temperature volatility has detrimental effects on daily activities,macroeconomic growth,and human health.Predicting abrupt temperature volatility and thus diminishing its negative impacts can be achieved by exploring homogeneous regions of temperature volatility and analyzing the driving factors.To investigate the regionalization of temperature volatility in China's mainland,a network constructed by the cosine similarity of temperature volatility series from China's mainland was embedded in hyperbolic space.Subsequently,we partitioned the network on the hyperbolic map using the critical gap method and then found eight regions in all.Ultimately,a network of communities was constructed while the interaction among communities was quantified.This yields a perspective of temperature volatility regionalization that can accurately reflect factors including altitude,climate type,and the geographic location of mountains.Further analysis demonstrates that the regionalization in the hyperbolic map is distinct from provinces and has a realistic basis:communities in southwest China show strong correlations due to the temperature sensitivity to altitude,and communities in northern China show a convergence in the area of Dingxi,Gansu,mainly owing to the strong temperature sensitivity to climate types.As a consequence,node distributions and community divisions in the hyperbolic map can offer new insights into the regionalization of temperature volatility in China's mainland.The results demonstrate the potential of hyperbolic embedding of complex networks in forecasting future node associations in real-world data.展开更多
Land dissection density(LDD)provides morphological evidence regarding prior intense soil erosion and quantifies the distribution of land dissections.A comprehensive understanding of the potential factors influencing t...Land dissection density(LDD)provides morphological evidence regarding prior intense soil erosion and quantifies the distribution of land dissections.A comprehensive understanding of the potential factors influencing the spatial pattern and value of the LDD is vital in geological disasters,soil erosion,and other related domains.Land dissection phenomena in China affects large areas with different morphological,pedological,and climatic characteristics.Prior studies have focused on the potential factors influencing the LDD at a watershed scale.However,these results are insufficient to reflect the status quo of dissection development and its primary influencing factors on a national scale.LDD’s spatial patterns and the dominant factors at a regional scale in millions of square kilometers remain to be ascertained.This study used the geomorphon-based method and the geographical detector model to quantify the spatial pattern of LDD over China and identify the dominant factors affecting this pattern in China’s six first-order geomorphological regions(GR1~GR6).The results yield the following findings:(1)LDD in China ranges from 0~4.55 km/km^(2),which is larger in central and eastern regions than in other regions of China;(2)dominant factors and their dominant risk subcategories vary with each geomorphological region’s primary internal and external forces;(3)the influence of natural factors is more significant on the large regional scale in millions of square kilometers compared to anthropogenic factors;relief degree of land surface(RDLS)is dominant in GR1,GR2,and GR5;the slope is dominant in GR6,soil type is dominant in GR3 and GR4,and lithology plays a critical role in the dominant interactions of GR3,GR4,and GR6;(4)the interactions between factors on LDD’s spatial pattern have a more significant effect than individual factors.展开更多
The propagation of seismic waves in viscous media,such as the loess plateau and shallow gas regions,alters their amplitude,frequency,and phase due to absorption attenuation,resulting in reductions in the resolution an...The propagation of seismic waves in viscous media,such as the loess plateau and shallow gas regions,alters their amplitude,frequency,and phase due to absorption attenuation,resulting in reductions in the resolution and fi delity of seismic profi les and the inaccurate identifi cation of subtle structure and lithology.Q modeling and Q migration techniques proposed in this paper are used to compensate for the energy and frequency attenuation of seismic waves,obtain high-quality depth imaging results,and further enhance structural imaging to address the aforementioned problem.First,various prior information is utilized to construct an initial Q model.Q tomography techniques are employed to further optimize the precision of the initial Q model and build a high-precision Q model.Subsequently,Q prestack depth migration technology is employed to compensate for absorption and attenuation in the three-dimensional space along the seismic wave propagation path and correct the travel times,realizing the purposes of amplitude compensation,frequency recovery,and phase correction,which can help improve the wave group characteristics while enhancing the resolution.Model data and practical application results demonstrate that high-precision Q modeling and Q migration techniques can substantially improve the imaging quality of underground structures and formations in the loess plateau region with extremely complex surface and near-surface conditions.The resolution and fi delity of seismic data,as well as the capability to identify reservoirs,can be improved using these techniques.展开更多
Patterns of taxonomic and phylogenetic beta diversity and their relationships with environmental correlates can help reveal the origin and evolutionary history of regional biota.The Qinghai-Tibet Plateau(QTP)harbors a...Patterns of taxonomic and phylogenetic beta diversity and their relationships with environmental correlates can help reveal the origin and evolutionary history of regional biota.The Qinghai-Tibet Plateau(QTP)harbors an exceptionally diverse flora,however,a phylogenetic perspective has rarely been used to investigate its beta diversity and floristic regions.In this study,we used a phylogenetic approach to identify patterns of beta diversity and quantitatively delimit floristic regions on the Qinghai-Tibet Plateau.We also examined the relationships between multifaceted beta diversity,geographical distance,and climatic difference,and evaluated the relative importance of various factors(i.e.,climate,topography and history)in shaping patterns of beta diversity.Sørensen dissimilarity indices indicated that patterns of species turnover among sites dominated the QTP.We also found that patterns of both taxonomic and phylogenetic beta diversity were significantly related to geographical distance and climatic difference.The environmental factors that contributed most to these patterns of beta diversity include annual precipitation,mean annual temperature,climatic gradients and climatic instability.Hierarchical dendrograms of dissimilarity and non-metric multidimensional scaling ordination based on phylogenetic beta diversity data identified ten floristic subregions in the QTP.Our results suggest that the contemporary environment and historical climate changes have filtered species composition among sites and eventually determined beta diversity patterns of plants in the QTP.展开更多
AIM:To study functional brain abnormalities in patients with eye trauma(ET)and to discuss the pathophysiological mechanisms of ET.METHODS:Totally 31 ET patients and 31 healthy controls(HCs)were recruited.The age,gende...AIM:To study functional brain abnormalities in patients with eye trauma(ET)and to discuss the pathophysiological mechanisms of ET.METHODS:Totally 31 ET patients and 31 healthy controls(HCs)were recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the functional connectivity(FC)method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Pearson’s correlation analysis was used to explore the relationship between FC values in specific brain regions and clinical behaviors in patients with ET.RESULTS:Significantly increased FC between several regions was identified including the medial prefrontal cortex(MPFC)and left hippocampus formations(HF),the MPFC and left inferior parietal lobule(IPL),the left IPL and left medial temporal lobe(MTL),the left IPL and right MTL,and the right IPL and left MTL.No decreased region-to-region connectivity was detected in default mode network(DMN)sub-regions in patients with ET.Compared with HCs,ET patients exhibited significantly increased FC between several paired DMN regions,as follows:posterior cingulate cortex(PCC)and right HF(HF.R,t=2.196,P=0.032),right inferior parietal cortices(IPC.R)and left MTL(MTL.L,t=2.243,P=0.029),and right MTL(MTL.R)and HF.R(t=2.236,P=0.029).CONCLUSION:FC values in multiple brain regions of ET patients are abnormal,suggesting that these brain regions in ET patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of ET.展开更多
[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global cl...[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global climate.The benefits of ecological soil and water conservation measures(ESWCMs,such as micro basins tillage and contour tillage)are widely understood,including runoff and soil loss reducing to a certain extent when compared with traditional tillage.While few studies have focused on China’s different soil types and erosion characteristics.[Methods]We reviewed literature from Web of Science,Scopus,and China National Knowledge Infrastructure using terms like“Conservation practice”“Contour tillage”“Runoff”“Sediment”“Erosion”and“China”and retained literatures based on criteria such as natural or simulated precipitation,runoff or soil loss data,reported replications and statistics,recorded factors like location and slope,and at least two data pairs per group.Ultimately,49 literatures were selected to quantify the impacts on different ESWCMs and identify the slope and precipitation for the greatest runoff and sediment reduction by calculating the log response ratio(LRR).[Results]The three regions’soil and water conservation benefits varied due to the differences in climate,terrain,and soil properties:1)ESWCMs applied in the black soil region of Northeast China were the most effective in reducing runoff and soil loss(66.65%runoff and 75.83%sediment),followed by those applied in the purple soil region of Southwest China(39.98%runoff and 58.30%sediment)and loess soil region of Northwest China(16.36%runoff and 32.44%sediment).2)Micro basins tillage(MBT)(71.79%runoff and 87.03%sediment)no-tillage with mulch(NTM)(17.30%runoff and 32.51%sediment),collecting soil to form a ridge with no-till(CSNT)(55.78%runoff and 71.36%sediment reduction)were the most efficient soil and water conservation measures in controlling water erosion in the black soil of Northeast China,the loess soil region of Northwest China and the purple soil region of Southwest China,respectively.3)The slope gradients ranged from 0-3°,>3°-5°and>10°-15°(0-3°:97.09%;>3°-5°:74.62%;and>10°-15°:39.41%)caused the largest reduction of runoff in the black soil region of Northeast China,the loess soil region of Northwest China,and the purple soil region of Southwest China.Meanwhile,the effects of sediment reduction were the most obvious,ranging from 0-3°,>10°-15°,and>20°-25°(0-3°:89.32%;>10°-15°:75.94%;and>20°-25°:67.25%).4)The effect of ESWCMs under rainstorms was the most obvious in the black soil region of Northeast China.The effect on runoff reduction under light rain in the purple soil region of Southwest China was the most obvious,but it failed to pass the significance test in sediment reduction.[Conclusions]The results provided optimal conservation tillage measures for three regions,different slopes and different rainfalls,and provided data support for reducing regional soil and water loss in China.展开更多
Despite a growing body of literature on smart specialization,the role of public authorities and innovation intermediaries,particularly in developing regions,remains understudied.This research examines one of the first...Despite a growing body of literature on smart specialization,the role of public authorities and innovation intermediaries,particularly in developing regions,remains understudied.This research examines one of the first attempts to apply the smart specialization framework to the development of an innovation strategy outside Europe,specifically in the Pernambuco State,Brazil.We focus on two priority areas(clothing and high-tech automotive components)identified by the state government as key targets for pilot policy experimentation and use different methods,such as social network analysis and content analysis,to interview strategic innovation actors for studying the promotion of innovation and regional development in Pernambuco.Findings highlight how regional governance,collaboration,and trust are shaped by public authorities and innovation intermediaries.The study identifies three key challenges in implementing smart specialization strategy in developing regions:i.e.,achieving effective decentralization,cultivating an innovation culture,and establishing participatory governance mechanisms.The public sector actors act as crucial knowledge brokers and policy intermediaries,facilitating the linkages and partnerships necessary to overcome these challenges.展开更多
This paper uses inter-provincial panel data from 2011 to 2017,a linear regression model,and a threshold model to conduct empirical analyses of the impact of the digital economy on China's overall economic growth a...This paper uses inter-provincial panel data from 2011 to 2017,a linear regression model,and a threshold model to conduct empirical analyses of the impact of the digital economy on China's overall economic growth and the three main sectors of industry.The paper then investigates the impact and effects the digital economy has had on the economic growth of the three main sectors of industry in China's eastern,central,and western regions.Finally,the paper investigates the most significant differences among the various regions and the threshold effects of urbanization levels on the relationship between the digital economy and economic growth.The findings indicate a significantly positive correlation between the digital economy and regional economic growth.Moreover,geographical factors notably influence this correlation.The digital economy exerts a positive effect on all sectors of industry.It may not substantially impact industrial development in regions with highly developed infrastructure.Regarding the other regions,the digital economy exhibits varying degrees of impact due to the differences in the specific indicators.The conclusion drawn by the threshold model is that the magnitude of the threshold effect correlates with geographic factors.No threshold effect was observed in the eastern region,while the threshold effect occurred in the central region when the urbanization levels for the provinces were below 0.6645.Similarly,the threshold effect was noted in the western region when the urbanization level was below 0.3931.Considering all of this,the study also offers policy recommendations that will help balance the regional development of digital economies,accelerate the digital transformation of traditional industries,enhance digital infrastructure construction,refine the formulation and implementation of data policy,and establish relevant incentive mechanisms.展开更多
The cold regions are located in high latitudes and cold climates.The local excellent ornamental plant resources are relatively scarce.The plant species that are suitable for both ornamental and productive benefits of ...The cold regions are located in high latitudes and cold climates.The local excellent ornamental plant resources are relatively scarce.The plant species that are suitable for both ornamental and productive benefits of landscape of flower sea construction are also even fewer.Therefore,it is imperative to introduce and screen the plant resources suitable for cold regions to create the landscape of flower sea.The rape,an oilseed crop,was used as a research object in order to create a productive flower landscape with both ornamental and economic values in cold regions.Four rape flower varieties,Qingza No.5,7,9,and 11,were introduced from Qinghai Hufeng Agricultural Science and Technology Group Co.,Ltd.They were planted in the experimental practice base of Northeast Agricultural University in three batches.Development characteristics and seed yield of rape flowers on different sowing dates were studied.The fuzzy probability method was used to comprehensively evaluate the varieties.The results showed that the rape flowers grew well in Harbin City during the experimental sowing period,which could form a good landscape of flower sea and had a considerable rapeseed yield.It could be widely used in cold urban and rural areas,such as Harbin City.In view of the experimental results,the strategies of creating a productive landscape of rape flower sea were proposed and the economic benefits were analyzed.It could change the status quo of a uniform landscape of flower sea in cold regions,help the development of rural tourism,and promote local economic income.展开更多
The technology of He ion implantation for improving the catastrophic optical damage (COD) level of 980nm semiconductor lasers is introduced.After He ion implantation,p-GaAs obtain higher resistivity than before.About...The technology of He ion implantation for improving the catastrophic optical damage (COD) level of 980nm semiconductor lasers is introduced.After He ion implantation,p-GaAs obtain higher resistivity than before.About 25μm-long current non-injection regions are introduced near both facets,where the injection current is blocked by high resistivity area.The current non-injection regions can reduce carriers inject to facets,and the rate of the non-radiative recombination are reduced.So the COD level is higher than before.The He ion implantation LDs exhibit no COD failure until the rollover occure at a mean maximum power of 440.5mW.Mean COD level of conventional LDs is given as 407.5mW.Compared to conventional LDs,the mean maximum output power level of He ion implantation LDs is improved by 8%.展开更多
Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigati...Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigation showed that the whole distribution of the cultivated land shifted to Northeast and Northwest China, and as a result, the ecological quality of cultivated land dropped down. The seacoast and cultivated land in the area of Yellow River Mouth expanded by an increasing rate of 0.73 kma-1, with a depositing rate of 2.1 kma-1. The desertification area of the dynamic of Horqin Sandy Land increased from 60.02% of the total land area in1970s to 64.82% in1980s but decreased to 54.90% in early 1990s. As to the change of North Tibet lakes, the water area of the Namu Lake decreased by 38.58 km2 from year 1970 to 1988, with a decreasing rate of 2.14 km2a-1.展开更多
Background:Type 2 diabetes(T2D)has already become a global pandemic.As its simple,rapid,economical,and relatively non-invasive,metabolic markers have become a method for T2D diagnosis.However,region,race,and diet all ...Background:Type 2 diabetes(T2D)has already become a global pandemic.As its simple,rapid,economical,and relatively non-invasive,metabolic markers have become a method for T2D diagnosis.However,region,race,and diet all affect the metabolism of the body.The purpose of current study is to explore the differences of metabolites in T2D patients from regions.Methods:We recruited 103 T2D patients in two clinical centers,including 52 T2D patients from Beijing(T2D_(B))and 51 T2D patients from Kaifeng(T2D_(K)).The serum samples from T2D patients were analyzed using high-resolution mass spectrometer.After screened using univariate and multivariate analysis,the differential metabolites were identified.Moreover,to reveal biological information,we performed pathway analysis with the differential metabolites.Results:Thirty-six differential metabolites were identified,including 16 metabolites were higher concentrations while 20 metabolites were lower concentrations in the serum of T2D_(B) patients than T2D_(K) patients.There were higher serum concentrations of L-phenylalanine,4-methyl-2-oxovaleric acid,L-carnitine,decanoylcarnitine,9-decenoylcarnitine and sphinganine in T2D_(B) patients,in which decanoylcarnitine in T2D_(B) patients was up to 35-fold higher than T2D_(K) patients.While there were lower concentrations of L-valine,L-isoleucine,arachidonic acid,oleic acid,16-hydroxyhexadecanoic acid,lysophosphatidylcholine(18:0)and 1-Phenylethylamine in T2D_(B) patients,in which 1-phenylethylamine in T2D_(B) patients was decreased to 0.45-fold lower than T2D_(K) patients.The reason for the differences might be that phosphatidylethanolamine biosynthesis,phosphatidylcholine biosynthesis,valine,leucine and isoleucine degradation,and beta-oxidation of very long chain fatty acids were different in T2D_(B) patients and in T2D_(K) patients.Conclusion:Metabolites from different pathways are independently related to regions,providing valuable insight and potential for the diagnosis and treatment of T2D.展开更多
There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,...There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,and Shaanxi Province)in Northwest China,most areas of which are located in arid and semi-arid regions(northwest of the 400 mm precipitation line),accounting for 58.74%of the country's land area and sustaining approximately 7.84×10^6 people.Because of drought conditions and fragile ecology,these regions cannot develop agriculture at the expense of the environment.Given the challenges of global warming,the green total factor productivity(GTFP),taking CO2 emissions as an undesirable output,is an effective index for measuring the sustainability of agricultural development.Agricultural GTFP can be influenced by both internal production factors(labor force,machinery,land,agricultural plastic film,diesel,pesticide,and fertilizer)and external climate factors(temperature,precipitation,and sunshine duration).In this study,we used the Super-slacks-based measure(Super-SBM)model to measure agricultural GTFP during the period 2000-2016 at the regional level.Our results show that the average agricultural GTFP of most provinces and autonomous regions in arid and semi-arid regions underwent a fluctuating increase during the study period(2000-2016),and the fluctuation was caused by the production factors(input and output factors).To improve agricultural GTFP,Shaanxi,Shanxi,and Gansu should reduce agricultural labor force input;Shaanxi,Inner Mongolia,Gansu,and Shanxi should decrease machinery input;Shaanxi,Inner Mongolia,Xinjiang,and Shanxi should reduce fertilizer input;Shaanxi,Xinjiang,Gansu,and Ningxia should reduce diesel input;Xinjiang and Gansu should decrease plastic film input;and Gansu,Shanxi,and Inner Mongolia should cut pesticide input.Desirable output agricultural earnings should be increased in Qinghai and Tibet,and undesirable output(CO2 emissions)should be reduced in Inner Mongolia,Xinjiang,Gansu,and Shaanxi.Agricultural GTFP is influenced not only by internal production factors but also by external climate factors.To determine the influence of climate factors on GTFP in these provinces and autonomous regions,we used a Geographical Detector(Geodetector)model to analyze the influence of climate factors(temperature,precipitation,and sunshine duration)and identify the relationships between different climate factors and GTFP.We found that temperature played a significant role in the spatial heterogeneity of GTFP among provinces and autonomous regions in arid and semi-arid regions.For Xinjiang,Inner Mongolia,and Tibet,a suitable average annual temperature would be in the range of 7℃-9℃;for Gansu,Shanxi,and Ningxia,it would be 11℃-13℃;and for Shaanxi,it would be 15℃-17℃.Stable climatic conditions and more efficient production are prerequisites for the development of sustainable agriculture.Hence,in the agricultural production process,reducing the redundancy of input factors is the best way to reduce CO2 emissions and to maintain temperatures,thereby improving the agricultural GTFP.The significance of this study is that it explores the impact of both internal production factors and external climatic factors on the development of sustainable agriculture in arid and semi-arid regions,identifying an effective way forward for the arid and semi-arid regions of Northwest China.展开更多
文摘Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.
基金Under the auspices of National Natural Science Foundation of China(No.42071162,42101165)。
文摘Under the background of complex international situation,how to build the special geo-economic space of China-Russia bor-der lies in strengthening their foreign trade resilience against external shocks.Based on empirical evidence from ten prefecture-level China-Russia border regions in Northeast China,this paper analyzed the spatiotemporal evolution of foreign trade resilience under different shocks.Furthermore,through the Panel Regression model,the mechanism of the industrial structure on the foreign trade resilience in contraction period and expansion period was discussed.The results showed that:1)from 2004 to 2021,foreign trade in China-Russia border regions experienced five phases.The overall foreign trade resilience was higher than expected,showing a rising volatility trend,but there was significant spatial heterogeneity in the ability of cities to cope with shocks.2)Highly specialized clusters were mainly concentrated in Yichun,Heihe and Da Hinggan Ling Prefecture,while Mudanjiang and Yanbian performed better in related and unrelated diversification.3)In different stages of economic system evolution,the response mode,degree and result of border foreign trade resilience to regional industrial structure showed obvious stage characteristics.During the contraction period,related diversification was more conducive to improving the resistance through risk spillovers.During the expansion period,specialization played a more significant role in improving regional resilience through self-reinforcing effect.These results are beneficial for expanding the resilience theory,ensuring border economic security and optimizing border industrial investment layout.
基金Under the auspices of the Innovation Program of Chinese Academy of Agricultural Sciences(No.CAAS-STNY-2024)。
文摘Urbanization often changes bird species richness and affects the functional diversity.Therefore,understanding these changes helps city planners improve green space design and land use planning.Our study used multiple datasets to explore the effects of land-scape patterns and natural environments on the functional diversity of birds in urban parks and campuses in the eastern and northwest-ern regions of China.Firstly,we used the data to calculate birds of the functional richness(FRic),functional evenness(FEve),and functional divergence(FDiv)of 68 urban spaces in the eastern and northwestern regions of China.Further,we established generalized linear models of natural factors,human factors,and functional diversity.Results showed more bird species with unique traits were in the north-western region.This may be because the earlier urbanization in the eastern region filtered out urban-sensitive species,leaving behind urban adapters.Moreover,we found that the fractal dimension index was the most significant positive factor of FRic in the eastern region but the most significant negative factor of FDiv.Elevation was the most significant negative influence factor of FEve in the eastern region,but it was the most potent positive influence factor of FRic in the northwestern region.Population density had a significant positive effect on FDiv in the northwestern region.However,green space areas significantly negatively impacted FEve in the northwestern region.In addition,birds in parks in both regions had more functional traits than those on campuses,possibly because of the larger green space in parks,which may contain more fragments of native vegetation and reduce human interference.Our study suggests that preserving more original vegetation and reducing human disturbance in cities can increase the functional diversity of urban birds and im-prove urban ecosystem functions.
文摘Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions.
文摘Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development.
文摘This paper explains various factors that contribute to saltwater intrusion, including overexploitation of freshwater resources and climate change as well as the different techniques essential for effective saltwater intrusion management. The impact of saltwater intrusion along coastal regions and its impact on the environment, hydrogeology and groundwater contamination. It suggests potential solutions to mitigate the impact of saltwater intrusion, including effective water management and techniques for managing SWI. The application of A.I (assessment index) serves as a guideline to correctly identify wells with SWI ranging from no intrusion, slight intrusion and strong intrusion. The challenges of saltwater intrusion in Lagos and the salinization of wells were investigated using the hydro-chemical parameters. The study identifies four wells (“AA”, “CMS”, “OBA” and “VIL”) as having high electric conductivities, indicating saline water intrusion, while other wells (“EBM”, “IKJ, and “IKO”) with lower electric conductivities, indicate little or no salt-water intrusion, and “AJ” well shows slight intrusion. The elevation of the wells also played a vital role in the SWI across coastal regions of Lagos. The study recommends continuous monitoring of coastal wells to help sustain and reduce saline intrusion. The findings of the study are important for policymakers, researchers, and practitioners who are interested in addressing the challenges of saltwater intrusion along coastal regions. We assessed the SWI across the eight (8) wells using the Assessment Index to identify wells with SWI. Wells in “CMS” and “VIL” has strong intrusions. A proposed classification system based on specific ion ratios categorizes water quality from good (+) to highly (-) contaminated (refer to Table 4). These findings underscore the need for attention and effective management strategies to address groundwater unsuitability for various purposes.
基金funded by the National Social Science Foundation of China,grant no.21CZZ007And Liberal Arts Development Foundation of Nankai University,grant no.ZB22BZ0332And the Beijing Academy of Agriculture and Forestry Sciences Foundation,grant no.KJCX20230203.
文摘The traditional governance model and hierarchical structure in China’s ethnic minority regions are inadequate for advancing farmers’income and modernizing rural governance.Moreover,these traditional structures have resulted in governance challenges including unequal allocation of rural resources,absence of villagers’agency,and lack of resource transparency.This study delves into the systematic structure of the“rural governance system in ethnic minority areas”.This study samples advanced ethnic minority township governance models from seven provinces,including Guangxi,Qinghai,and the Tibet Autonomous Region in China,and employs Grounded Theory to encode and analyze sub-elements within their governance systems.Subsequently,it investigates the construction logic of a novel rural governance system.(1)The research reveals that primary-level Party organization play a pivotal role in connecting bilateral delegated agency relationships,thereby establishing a mutually cooperative“chain-like”structure in village governance systems within ethnic minority areas.(2)The study identifies two cooperative production paths of the new rural governance in ethnic minority areas:top-down field-oriented party-government integrated governance and bottom-up legalized multi-subject collaborative governance.(3)By employing“integration means-bilateral mobilization”as the mechanism for momentum adjustment and relying on social autonomy,grassroots party organizations shape the momentum adjustment of the new rural governance system in ethnic minority areas.They do so by leveraging both formal and informal governance methods within this framework.Consequently,this study offers pertinent policy recommendations aimed at resolving the challenges of interest coordination and uneven development in ethnic minority areas amidst China’s governance modernization efforts.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275179,12005079,and 41975100),the Shanghai Natural Science Foundation of China(Grant No.21ZR1443900),Natural Science Foundation of Jiangsu Province(Grant No.BK20220511),the funding for Scientific Research Startup of Jiangsu University(Grant No.4111710001),and the Joint Research Project for Meteorological Capacity Improvement(Grant No.22NLTSZ004).
文摘Abrupt temperature volatility has detrimental effects on daily activities,macroeconomic growth,and human health.Predicting abrupt temperature volatility and thus diminishing its negative impacts can be achieved by exploring homogeneous regions of temperature volatility and analyzing the driving factors.To investigate the regionalization of temperature volatility in China's mainland,a network constructed by the cosine similarity of temperature volatility series from China's mainland was embedded in hyperbolic space.Subsequently,we partitioned the network on the hyperbolic map using the critical gap method and then found eight regions in all.Ultimately,a network of communities was constructed while the interaction among communities was quantified.This yields a perspective of temperature volatility regionalization that can accurately reflect factors including altitude,climate type,and the geographic location of mountains.Further analysis demonstrates that the regionalization in the hyperbolic map is distinct from provinces and has a realistic basis:communities in southwest China show strong correlations due to the temperature sensitivity to altitude,and communities in northern China show a convergence in the area of Dingxi,Gansu,mainly owing to the strong temperature sensitivity to climate types.As a consequence,node distributions and community divisions in the hyperbolic map can offer new insights into the regionalization of temperature volatility in China's mainland.The results demonstrate the potential of hyperbolic embedding of complex networks in forecasting future node associations in real-world data.
基金supported by the Natural Science Foundation of China(Grants No.42167038,42161005)the Guangxi Scientific Project(Grants No.AD19110140)the Guangxi Scholarship Fund of the Guangxi Education Department and Guangxi Education Department project(Grants No.2022KY1168).
文摘Land dissection density(LDD)provides morphological evidence regarding prior intense soil erosion and quantifies the distribution of land dissections.A comprehensive understanding of the potential factors influencing the spatial pattern and value of the LDD is vital in geological disasters,soil erosion,and other related domains.Land dissection phenomena in China affects large areas with different morphological,pedological,and climatic characteristics.Prior studies have focused on the potential factors influencing the LDD at a watershed scale.However,these results are insufficient to reflect the status quo of dissection development and its primary influencing factors on a national scale.LDD’s spatial patterns and the dominant factors at a regional scale in millions of square kilometers remain to be ascertained.This study used the geomorphon-based method and the geographical detector model to quantify the spatial pattern of LDD over China and identify the dominant factors affecting this pattern in China’s six first-order geomorphological regions(GR1~GR6).The results yield the following findings:(1)LDD in China ranges from 0~4.55 km/km^(2),which is larger in central and eastern regions than in other regions of China;(2)dominant factors and their dominant risk subcategories vary with each geomorphological region’s primary internal and external forces;(3)the influence of natural factors is more significant on the large regional scale in millions of square kilometers compared to anthropogenic factors;relief degree of land surface(RDLS)is dominant in GR1,GR2,and GR5;the slope is dominant in GR6,soil type is dominant in GR3 and GR4,and lithology plays a critical role in the dominant interactions of GR3,GR4,and GR6;(4)the interactions between factors on LDD’s spatial pattern have a more significant effect than individual factors.
基金supported by the China National Offshore Oil Corporation’s“14th Five-Year Plan”major scientific and technological project,“Key Technologies for Onshore Unconventional Natural Gas Exploration and Development”(KJGG2021-1000).
文摘The propagation of seismic waves in viscous media,such as the loess plateau and shallow gas regions,alters their amplitude,frequency,and phase due to absorption attenuation,resulting in reductions in the resolution and fi delity of seismic profi les and the inaccurate identifi cation of subtle structure and lithology.Q modeling and Q migration techniques proposed in this paper are used to compensate for the energy and frequency attenuation of seismic waves,obtain high-quality depth imaging results,and further enhance structural imaging to address the aforementioned problem.First,various prior information is utilized to construct an initial Q model.Q tomography techniques are employed to further optimize the precision of the initial Q model and build a high-precision Q model.Subsequently,Q prestack depth migration technology is employed to compensate for absorption and attenuation in the three-dimensional space along the seismic wave propagation path and correct the travel times,realizing the purposes of amplitude compensation,frequency recovery,and phase correction,which can help improve the wave group characteristics while enhancing the resolution.Model data and practical application results demonstrate that high-precision Q modeling and Q migration techniques can substantially improve the imaging quality of underground structures and formations in the loess plateau region with extremely complex surface and near-surface conditions.The resolution and fi delity of seismic data,as well as the capability to identify reservoirs,can be improved using these techniques.
基金This study was funded by the National Natural Science Foundation of China(grant no.31901212)Talent Start-up Foundation of Guangzhou University(grant no.RP2020079).
文摘Patterns of taxonomic and phylogenetic beta diversity and their relationships with environmental correlates can help reveal the origin and evolutionary history of regional biota.The Qinghai-Tibet Plateau(QTP)harbors an exceptionally diverse flora,however,a phylogenetic perspective has rarely been used to investigate its beta diversity and floristic regions.In this study,we used a phylogenetic approach to identify patterns of beta diversity and quantitatively delimit floristic regions on the Qinghai-Tibet Plateau.We also examined the relationships between multifaceted beta diversity,geographical distance,and climatic difference,and evaluated the relative importance of various factors(i.e.,climate,topography and history)in shaping patterns of beta diversity.Sørensen dissimilarity indices indicated that patterns of species turnover among sites dominated the QTP.We also found that patterns of both taxonomic and phylogenetic beta diversity were significantly related to geographical distance and climatic difference.The environmental factors that contributed most to these patterns of beta diversity include annual precipitation,mean annual temperature,climatic gradients and climatic instability.Hierarchical dendrograms of dissimilarity and non-metric multidimensional scaling ordination based on phylogenetic beta diversity data identified ten floristic subregions in the QTP.Our results suggest that the contemporary environment and historical climate changes have filtered species composition among sites and eventually determined beta diversity patterns of plants in the QTP.
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203)Key R&D Program of Jiangxi Province(No.20223BBH80014)+1 种基金Science and Technology Project of Jiangxi Province Health Commission of Traditional Chinese Medicine(No.2022B258)Science and Technology Project of Jiangxi Health Commission(No.202210017).
文摘AIM:To study functional brain abnormalities in patients with eye trauma(ET)and to discuss the pathophysiological mechanisms of ET.METHODS:Totally 31 ET patients and 31 healthy controls(HCs)were recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the functional connectivity(FC)method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Pearson’s correlation analysis was used to explore the relationship between FC values in specific brain regions and clinical behaviors in patients with ET.RESULTS:Significantly increased FC between several regions was identified including the medial prefrontal cortex(MPFC)and left hippocampus formations(HF),the MPFC and left inferior parietal lobule(IPL),the left IPL and left medial temporal lobe(MTL),the left IPL and right MTL,and the right IPL and left MTL.No decreased region-to-region connectivity was detected in default mode network(DMN)sub-regions in patients with ET.Compared with HCs,ET patients exhibited significantly increased FC between several paired DMN regions,as follows:posterior cingulate cortex(PCC)and right HF(HF.R,t=2.196,P=0.032),right inferior parietal cortices(IPC.R)and left MTL(MTL.L,t=2.243,P=0.029),and right MTL(MTL.R)and HF.R(t=2.236,P=0.029).CONCLUSION:FC values in multiple brain regions of ET patients are abnormal,suggesting that these brain regions in ET patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of ET.
基金Science and Technology Major Project of Tibetan Autonomous Region of China(XZ202201ZD0005G02)National Natural Science Foundation of China(42277353)Chengdu Science and Technology Project(2022-YF05-01162-SN)。
文摘[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global climate.The benefits of ecological soil and water conservation measures(ESWCMs,such as micro basins tillage and contour tillage)are widely understood,including runoff and soil loss reducing to a certain extent when compared with traditional tillage.While few studies have focused on China’s different soil types and erosion characteristics.[Methods]We reviewed literature from Web of Science,Scopus,and China National Knowledge Infrastructure using terms like“Conservation practice”“Contour tillage”“Runoff”“Sediment”“Erosion”and“China”and retained literatures based on criteria such as natural or simulated precipitation,runoff or soil loss data,reported replications and statistics,recorded factors like location and slope,and at least two data pairs per group.Ultimately,49 literatures were selected to quantify the impacts on different ESWCMs and identify the slope and precipitation for the greatest runoff and sediment reduction by calculating the log response ratio(LRR).[Results]The three regions’soil and water conservation benefits varied due to the differences in climate,terrain,and soil properties:1)ESWCMs applied in the black soil region of Northeast China were the most effective in reducing runoff and soil loss(66.65%runoff and 75.83%sediment),followed by those applied in the purple soil region of Southwest China(39.98%runoff and 58.30%sediment)and loess soil region of Northwest China(16.36%runoff and 32.44%sediment).2)Micro basins tillage(MBT)(71.79%runoff and 87.03%sediment)no-tillage with mulch(NTM)(17.30%runoff and 32.51%sediment),collecting soil to form a ridge with no-till(CSNT)(55.78%runoff and 71.36%sediment reduction)were the most efficient soil and water conservation measures in controlling water erosion in the black soil of Northeast China,the loess soil region of Northwest China and the purple soil region of Southwest China,respectively.3)The slope gradients ranged from 0-3°,>3°-5°and>10°-15°(0-3°:97.09%;>3°-5°:74.62%;and>10°-15°:39.41%)caused the largest reduction of runoff in the black soil region of Northeast China,the loess soil region of Northwest China,and the purple soil region of Southwest China.Meanwhile,the effects of sediment reduction were the most obvious,ranging from 0-3°,>10°-15°,and>20°-25°(0-3°:89.32%;>10°-15°:75.94%;and>20°-25°:67.25%).4)The effect of ESWCMs under rainstorms was the most obvious in the black soil region of Northeast China.The effect on runoff reduction under light rain in the purple soil region of Southwest China was the most obvious,but it failed to pass the significance test in sediment reduction.[Conclusions]The results provided optimal conservation tillage measures for three regions,different slopes and different rainfalls,and provided data support for reducing regional soil and water loss in China.
基金the project “Regional Innovation Systems in the State of Pernambuco – Brazil” (2016CE160AT045 EU-CELAC), which was funded by the European Commission’s Directorate-General for Regional Policysupported by national funds of the Portuguese Foundation for Science and Technology (FCT) under the scope of the Research Centre for Tourism, Sustainability and Well-being and his individual research plan。
文摘Despite a growing body of literature on smart specialization,the role of public authorities and innovation intermediaries,particularly in developing regions,remains understudied.This research examines one of the first attempts to apply the smart specialization framework to the development of an innovation strategy outside Europe,specifically in the Pernambuco State,Brazil.We focus on two priority areas(clothing and high-tech automotive components)identified by the state government as key targets for pilot policy experimentation and use different methods,such as social network analysis and content analysis,to interview strategic innovation actors for studying the promotion of innovation and regional development in Pernambuco.Findings highlight how regional governance,collaboration,and trust are shaped by public authorities and innovation intermediaries.The study identifies three key challenges in implementing smart specialization strategy in developing regions:i.e.,achieving effective decentralization,cultivating an innovation culture,and establishing participatory governance mechanisms.The public sector actors act as crucial knowledge brokers and policy intermediaries,facilitating the linkages and partnerships necessary to overcome these challenges.
文摘This paper uses inter-provincial panel data from 2011 to 2017,a linear regression model,and a threshold model to conduct empirical analyses of the impact of the digital economy on China's overall economic growth and the three main sectors of industry.The paper then investigates the impact and effects the digital economy has had on the economic growth of the three main sectors of industry in China's eastern,central,and western regions.Finally,the paper investigates the most significant differences among the various regions and the threshold effects of urbanization levels on the relationship between the digital economy and economic growth.The findings indicate a significantly positive correlation between the digital economy and regional economic growth.Moreover,geographical factors notably influence this correlation.The digital economy exerts a positive effect on all sectors of industry.It may not substantially impact industrial development in regions with highly developed infrastructure.Regarding the other regions,the digital economy exhibits varying degrees of impact due to the differences in the specific indicators.The conclusion drawn by the threshold model is that the magnitude of the threshold effect correlates with geographic factors.No threshold effect was observed in the eastern region,while the threshold effect occurred in the central region when the urbanization levels for the provinces were below 0.6645.Similarly,the threshold effect was noted in the western region when the urbanization level was below 0.3931.Considering all of this,the study also offers policy recommendations that will help balance the regional development of digital economies,accelerate the digital transformation of traditional industries,enhance digital infrastructure construction,refine the formulation and implementation of data policy,and establish relevant incentive mechanisms.
基金the National Nature Science Foundation of China(31770437)。
文摘The cold regions are located in high latitudes and cold climates.The local excellent ornamental plant resources are relatively scarce.The plant species that are suitable for both ornamental and productive benefits of landscape of flower sea construction are also even fewer.Therefore,it is imperative to introduce and screen the plant resources suitable for cold regions to create the landscape of flower sea.The rape,an oilseed crop,was used as a research object in order to create a productive flower landscape with both ornamental and economic values in cold regions.Four rape flower varieties,Qingza No.5,7,9,and 11,were introduced from Qinghai Hufeng Agricultural Science and Technology Group Co.,Ltd.They were planted in the experimental practice base of Northeast Agricultural University in three batches.Development characteristics and seed yield of rape flowers on different sowing dates were studied.The fuzzy probability method was used to comprehensively evaluate the varieties.The results showed that the rape flowers grew well in Harbin City during the experimental sowing period,which could form a good landscape of flower sea and had a considerable rapeseed yield.It could be widely used in cold urban and rural areas,such as Harbin City.In view of the experimental results,the strategies of creating a productive landscape of rape flower sea were proposed and the economic benefits were analyzed.It could change the status quo of a uniform landscape of flower sea in cold regions,help the development of rural tourism,and promote local economic income.
文摘The technology of He ion implantation for improving the catastrophic optical damage (COD) level of 980nm semiconductor lasers is introduced.After He ion implantation,p-GaAs obtain higher resistivity than before.About 25μm-long current non-injection regions are introduced near both facets,where the injection current is blocked by high resistivity area.The current non-injection regions can reduce carriers inject to facets,and the rate of the non-radiative recombination are reduced.So the COD level is higher than before.The He ion implantation LDs exhibit no COD failure until the rollover occure at a mean maximum power of 440.5mW.Mean COD level of conventional LDs is given as 407.5mW.Compared to conventional LDs,the mean maximum output power level of He ion implantation LDs is improved by 8%.
基金National Natural Sci-ence Foundation of China (Grant No. 39900084) and KZCX1-10-07.
文摘Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigation showed that the whole distribution of the cultivated land shifted to Northeast and Northwest China, and as a result, the ecological quality of cultivated land dropped down. The seacoast and cultivated land in the area of Yellow River Mouth expanded by an increasing rate of 0.73 kma-1, with a depositing rate of 2.1 kma-1. The desertification area of the dynamic of Horqin Sandy Land increased from 60.02% of the total land area in1970s to 64.82% in1980s but decreased to 54.90% in early 1990s. As to the change of North Tibet lakes, the water area of the Namu Lake decreased by 38.58 km2 from year 1970 to 1988, with a decreasing rate of 2.14 km2a-1.
基金supported by the National Natural Science Foundation of China(82130112)Capital’s Funds for Health Improvement and Research(CFH2024-2-1193)the Youth Beijing Scholar(2022-051).
文摘Background:Type 2 diabetes(T2D)has already become a global pandemic.As its simple,rapid,economical,and relatively non-invasive,metabolic markers have become a method for T2D diagnosis.However,region,race,and diet all affect the metabolism of the body.The purpose of current study is to explore the differences of metabolites in T2D patients from regions.Methods:We recruited 103 T2D patients in two clinical centers,including 52 T2D patients from Beijing(T2D_(B))and 51 T2D patients from Kaifeng(T2D_(K)).The serum samples from T2D patients were analyzed using high-resolution mass spectrometer.After screened using univariate and multivariate analysis,the differential metabolites were identified.Moreover,to reveal biological information,we performed pathway analysis with the differential metabolites.Results:Thirty-six differential metabolites were identified,including 16 metabolites were higher concentrations while 20 metabolites were lower concentrations in the serum of T2D_(B) patients than T2D_(K) patients.There were higher serum concentrations of L-phenylalanine,4-methyl-2-oxovaleric acid,L-carnitine,decanoylcarnitine,9-decenoylcarnitine and sphinganine in T2D_(B) patients,in which decanoylcarnitine in T2D_(B) patients was up to 35-fold higher than T2D_(K) patients.While there were lower concentrations of L-valine,L-isoleucine,arachidonic acid,oleic acid,16-hydroxyhexadecanoic acid,lysophosphatidylcholine(18:0)and 1-Phenylethylamine in T2D_(B) patients,in which 1-phenylethylamine in T2D_(B) patients was decreased to 0.45-fold lower than T2D_(K) patients.The reason for the differences might be that phosphatidylethanolamine biosynthesis,phosphatidylcholine biosynthesis,valine,leucine and isoleucine degradation,and beta-oxidation of very long chain fatty acids were different in T2D_(B) patients and in T2D_(K) patients.Conclusion:Metabolites from different pathways are independently related to regions,providing valuable insight and potential for the diagnosis and treatment of T2D.
基金the National Natural Science Foundation of China(71974176,71473233)the Chinese Academy of Sciences(CAS)"Light of West China"Program(2018-XBQNXZ-B-017)+1 种基金the High Level Talent Introduction Project of Xinjiang Uygur Autonomous Region(Y942171)the"High Talents Program of Xinjiang Institute of Ecology and Geography,CAS"(Y871171).
文摘There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,and Shaanxi Province)in Northwest China,most areas of which are located in arid and semi-arid regions(northwest of the 400 mm precipitation line),accounting for 58.74%of the country's land area and sustaining approximately 7.84×10^6 people.Because of drought conditions and fragile ecology,these regions cannot develop agriculture at the expense of the environment.Given the challenges of global warming,the green total factor productivity(GTFP),taking CO2 emissions as an undesirable output,is an effective index for measuring the sustainability of agricultural development.Agricultural GTFP can be influenced by both internal production factors(labor force,machinery,land,agricultural plastic film,diesel,pesticide,and fertilizer)and external climate factors(temperature,precipitation,and sunshine duration).In this study,we used the Super-slacks-based measure(Super-SBM)model to measure agricultural GTFP during the period 2000-2016 at the regional level.Our results show that the average agricultural GTFP of most provinces and autonomous regions in arid and semi-arid regions underwent a fluctuating increase during the study period(2000-2016),and the fluctuation was caused by the production factors(input and output factors).To improve agricultural GTFP,Shaanxi,Shanxi,and Gansu should reduce agricultural labor force input;Shaanxi,Inner Mongolia,Gansu,and Shanxi should decrease machinery input;Shaanxi,Inner Mongolia,Xinjiang,and Shanxi should reduce fertilizer input;Shaanxi,Xinjiang,Gansu,and Ningxia should reduce diesel input;Xinjiang and Gansu should decrease plastic film input;and Gansu,Shanxi,and Inner Mongolia should cut pesticide input.Desirable output agricultural earnings should be increased in Qinghai and Tibet,and undesirable output(CO2 emissions)should be reduced in Inner Mongolia,Xinjiang,Gansu,and Shaanxi.Agricultural GTFP is influenced not only by internal production factors but also by external climate factors.To determine the influence of climate factors on GTFP in these provinces and autonomous regions,we used a Geographical Detector(Geodetector)model to analyze the influence of climate factors(temperature,precipitation,and sunshine duration)and identify the relationships between different climate factors and GTFP.We found that temperature played a significant role in the spatial heterogeneity of GTFP among provinces and autonomous regions in arid and semi-arid regions.For Xinjiang,Inner Mongolia,and Tibet,a suitable average annual temperature would be in the range of 7℃-9℃;for Gansu,Shanxi,and Ningxia,it would be 11℃-13℃;and for Shaanxi,it would be 15℃-17℃.Stable climatic conditions and more efficient production are prerequisites for the development of sustainable agriculture.Hence,in the agricultural production process,reducing the redundancy of input factors is the best way to reduce CO2 emissions and to maintain temperatures,thereby improving the agricultural GTFP.The significance of this study is that it explores the impact of both internal production factors and external climatic factors on the development of sustainable agriculture in arid and semi-arid regions,identifying an effective way forward for the arid and semi-arid regions of Northwest China.