This work presents a comparative study of the influence of various parameters on the analog and RF properties of silicon-nanotube MOSFETs and nanowire-based gate-all-around(GAA) MOSFETs.The important analog and RF p...This work presents a comparative study of the influence of various parameters on the analog and RF properties of silicon-nanotube MOSFETs and nanowire-based gate-all-around(GAA) MOSFETs.The important analog and RF performance parameters of SiNT FETs and GAA MOSFETs,namely drain current(/d),transconductance to drain current ratio(g_m/I_d),I_(on)/I_(off),the cut-off frequency(f_T) and the maximum frequency of oscillation(/max) are evaluated with the help of Y- and H-parameters which are obtained from a 3-D device simulator,ATLAS^(TM).It is found that the silicon-nanotube MOSFETs have far more superior analog and RF characteristics(g_m/I_d,f_T and /max) compared to the nanowire-based gate-all-around GAA MOSFETs.The silicon-nanotube MOSFET shows an improvement of ~2.5 and 3 times in the case of f_T and /max values respectively compared with the nanowire-based gate-all-around(GAA) MOSFET.展开更多
基金supported by the Defence Research and Development Organisation(DRDO),Ministry of Defence,Govt.of India(No.CC/TM/ERIPR/GIA/1516/020)
文摘This work presents a comparative study of the influence of various parameters on the analog and RF properties of silicon-nanotube MOSFETs and nanowire-based gate-all-around(GAA) MOSFETs.The important analog and RF performance parameters of SiNT FETs and GAA MOSFETs,namely drain current(/d),transconductance to drain current ratio(g_m/I_d),I_(on)/I_(off),the cut-off frequency(f_T) and the maximum frequency of oscillation(/max) are evaluated with the help of Y- and H-parameters which are obtained from a 3-D device simulator,ATLAS^(TM).It is found that the silicon-nanotube MOSFETs have far more superior analog and RF characteristics(g_m/I_d,f_T and /max) compared to the nanowire-based gate-all-around GAA MOSFETs.The silicon-nanotube MOSFET shows an improvement of ~2.5 and 3 times in the case of f_T and /max values respectively compared with the nanowire-based gate-all-around(GAA) MOSFET.