Combined with two-dimensional(2D)and three-dimensional(3D)finite element analysis and preliminary experimental tests,the effects of size and placement of the electromagnetic shield of the radio-frequency(RF)ion source...Combined with two-dimensional(2D)and three-dimensional(3D)finite element analysis and preliminary experimental tests,the effects of size and placement of the electromagnetic shield of the radio-frequency(RF)ion source with two drivers on plasma parameters and RF power transfer efficiency are analyzed.It is found that the same input direction of the current is better for the RF ion source with multiple drivers.The electromagnetic shield(EMS)should be placed symmetrically around the drivers,which is beneficial for the plasma to distribute uniformly and symmetrically in both drivers.Furthermore,the bigger the EMS shield radius is the better generating a higher electron density.These results will be of guiding significance to the design of electromagnetic shielding for RF ion sources with a multi-driver.展开更多
As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and...As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi- threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.展开更多
A 16 kV/20 A power supply was developed for the extraction grid of prototype radio frequency(RF) ion source of neutral beam injector. To acquire the state signals of extraction grid power supply(EGPS) and control ...A 16 kV/20 A power supply was developed for the extraction grid of prototype radio frequency(RF) ion source of neutral beam injector. To acquire the state signals of extraction grid power supply(EGPS) and control the operation of the EGPS, a data acquisition and control system has been developed. This system mainly consists of interlock protection circuit board, photoelectric conversion circuit, optical fibers, industrial compact peripheral component interconnect(CPCI) computer and host computer. The human machine interface of host computer delivers commands and data to program of the CPCI computer, as well as offers a convenient client for setting parameters and displaying EGPS status. The CPCI computer acquires the status of the power supply. The system can turn-off the EGPS quickly when the faults of EGPS occur. The system has been applied to the EGPS of prototype RF ion source. Test results show that the data acquisition and control system for the EGPS can meet the requirements of the operation of prototype RF ion source.展开更多
A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a dr...A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argongas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter,such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the shortand long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region.展开更多
A radio frequency(RF)driven ion source is a very important component of a neutral beam injector for large magnetic confinement fusion devices.In order to study the key technology and physics of an RF driven ion source...A radio frequency(RF)driven ion source is a very important component of a neutral beam injector for large magnetic confinement fusion devices.In order to study the key technology and physics of an RF driven ion source for a neutral beam injector in China,an RF ion source test facility was developed at the Institute of Plasma Physics,Chinese Academy of Sciences.In this paper,a two-dimensional fluid model is used to simulate the fundamental physical characteristics of RF plasma discharge.Simulation results show the relationship of the characteristics of plasma(such as electron density and electron temperature)and RF power and gas pressure.In order to verify the effectiveness of the model,the characteristics of the plasma are investigated using a Langmuir probe.In this paper,experimental and simulation results are presented,and the possible reasons for the discrepancies between them are given.This paper can help us understand the characteristics of RF plasma discharge,and give a basis for further R&D for an RF ion source.展开更多
In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source,a prototype source with a single driver and three-electrode accelerator was developed.Recently,the be...In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source,a prototype source with a single driver and three-electrode accelerator was developed.Recently,the beam source was tested on the RF source test facility with RF plasma generation,negative ion production and extraction.A magnetic filter system and a Cs injection system were employed to enhance the negative ion production.As a result,a long pulse of 105 s negative ion beam with current density of 153 A m-2 was repeatedly extracted successfully.The source pressure is 0.6 Pa and the ratio of co-extracted electron and negative ion current is around0.3.The details of design and experimental results of beam source were shown in this letter.展开更多
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11975263)the National Key R&D Program of China(No.2017YFE0300101)。
文摘Combined with two-dimensional(2D)and three-dimensional(3D)finite element analysis and preliminary experimental tests,the effects of size and placement of the electromagnetic shield of the radio-frequency(RF)ion source with two drivers on plasma parameters and RF power transfer efficiency are analyzed.It is found that the same input direction of the current is better for the RF ion source with multiple drivers.The electromagnetic shield(EMS)should be placed symmetrically around the drivers,which is beneficial for the plasma to distribute uniformly and symmetrically in both drivers.Furthermore,the bigger the EMS shield radius is the better generating a higher electron density.These results will be of guiding significance to the design of electromagnetic shielding for RF ion sources with a multi-driver.
基金the NBI team and the partial support of National Natural Science Foundation of China (No. 61363019)National Natural Science Foundation of Qinghai Province (No. 2014-ZJ-718)
文摘As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi- threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.
基金supported by National Natural Science Foundation of China(Contract Nos.11505225&11675216)Foundation of ASIPP(Contract No.DSJJ-15-GC03)the Key Program of Research and Development of Hefei Science Center,CAS(2016HSC-KPRD002)
文摘A 16 kV/20 A power supply was developed for the extraction grid of prototype radio frequency(RF) ion source of neutral beam injector. To acquire the state signals of extraction grid power supply(EGPS) and control the operation of the EGPS, a data acquisition and control system has been developed. This system mainly consists of interlock protection circuit board, photoelectric conversion circuit, optical fibers, industrial compact peripheral component interconnect(CPCI) computer and host computer. The human machine interface of host computer delivers commands and data to program of the CPCI computer, as well as offers a convenient client for setting parameters and displaying EGPS status. The CPCI computer acquires the status of the power supply. The system can turn-off the EGPS quickly when the faults of EGPS occur. The system has been applied to the EGPS of prototype RF ion source. Test results show that the data acquisition and control system for the EGPS can meet the requirements of the operation of prototype RF ion source.
基金supported by the Ministry of Science,ICT and Future Planning of the Republic of Korea under the ITER Technology R&D ProgramNational R&D Program Through the National Research Foundation of Korea(NRF)Funded by the Ministry of Science,ICT&Future Planning(NRF-2014M1A7A1A03045372)
文摘A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argongas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter,such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the shortand long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region.
基金National Natural Science Foundation of China(Nos.11675216,11905248,11975261,11975262,11975263,and 11975264)the Key Program of Research and Development of Hefei Science Center,CAS(Contract No.2016HSC-KPRD002)the National Key R&D Program of China(Nos.2017YFE0300101,2017YFE0300103,and 2017YFE0300503).
文摘A radio frequency(RF)driven ion source is a very important component of a neutral beam injector for large magnetic confinement fusion devices.In order to study the key technology and physics of an RF driven ion source for a neutral beam injector in China,an RF ion source test facility was developed at the Institute of Plasma Physics,Chinese Academy of Sciences.In this paper,a two-dimensional fluid model is used to simulate the fundamental physical characteristics of RF plasma discharge.Simulation results show the relationship of the characteristics of plasma(such as electron density and electron temperature)and RF power and gas pressure.In order to verify the effectiveness of the model,the characteristics of the plasma are investigated using a Langmuir probe.In this paper,experimental and simulation results are presented,and the possible reasons for the discrepancies between them are given.This paper can help us understand the characteristics of RF plasma discharge,and give a basis for further R&D for an RF ion source.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)
文摘In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source,a prototype source with a single driver and three-electrode accelerator was developed.Recently,the beam source was tested on the RF source test facility with RF plasma generation,negative ion production and extraction.A magnetic filter system and a Cs injection system were employed to enhance the negative ion production.As a result,a long pulse of 105 s negative ion beam with current density of 153 A m-2 was repeatedly extracted successfully.The source pressure is 0.6 Pa and the ratio of co-extracted electron and negative ion current is around0.3.The details of design and experimental results of beam source were shown in this letter.