期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Development of Powerful RF Plasma Sources for Present and Future NBI Systems 被引量:2
1
作者 E.Speth NBI-Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2004年第1期2135-2140,共6页
This paper deals with the topic of RF plasma sources and their application inhigh-power neutral beam heating systems for nuclear fusion devices. RF sources represent aninteresting alternative to the conventional arc d... This paper deals with the topic of RF plasma sources and their application inhigh-power neutral beam heating systems for nuclear fusion devices. RF sources represent aninteresting alternative to the conventional arc discharge sources. Due to the absence of hotfilaments they exhibit an inherent simplicity both in mechanical and electrical aspects andconsequently offer advantages in terms of cost savings, gain in availability and reliability andreduced maintenance. This renders the RF plasma source attractive for any long pulse (> 10 sec) NBIsystem and in particular for the ITER NBI system. The latter, however, requires that the RF plasmasource is also capable of delivering negative rather than positive hydrogen ions. In the first partof the paper the types, characteristics and operation experience of RF plasma sources for positiveions in operation are described. The second part is devoted to the development for ITER NBI: thebasic requirements, physics and technology issues and the present status are discussed. 展开更多
关键词 neutral beam injection negative ions rf plasma source
下载PDF
Plasma density enhancement in radio-frequency hollow electrode discharge
2
作者 贺柳良 何锋 欧阳吉庭 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期44-51,共8页
The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results s... The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results show that plasma exists inside the cavity when the sheath inside the hollow electrode hole is fully collapsed, which is an essential condition for the plasma density enhancement outside hollow electrodes. In addition, the existence of the electron density peak at the orifice is generated via the hollow cathode effect(HCE), which plays an important role in the density enhancement. It is also found that the radial width of bulk plasma at the orifice affects the magnitude of the density enhancement, and narrow radial plasma bulk width at the orifice is not beneficial to obtain high-density plasma outside hollow electrodes.Higher electron density at the orifice, combined with larger radial plasma bulk width at the orifice,causes higher electron density outside hollow electrodes. The results also imply that the HCE strength inside the cavity cannot be determined by the magnitude of the electron density outside hollow electrodes. 展开更多
关键词 rf capacitively coupled plasma sources plasma density enhancement hollow cathodeeffect hollow electrode
下载PDF
Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors
3
作者 Doo-Hee CHANG Seung Ho JEONG +4 位作者 Min PARK Tae-Seong KIM Bong-Ki JUNG Kwang Won LEE Sang Ryul IN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第12期1220-1224,共5页
A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a dr... A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argongas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter,such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the shortand long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region. 展开更多
关键词 neutral beam injector rf ion source plasma ignition power loading plasma parameters
下载PDF
Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer 被引量:2
4
作者 贺建武 马隆飞 +3 位作者 薛森文 章楚 段俐 康琦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第2期122-127,共6页
Inductively coupled radio-frequency(RF) plasma neutralizer(RPN) is an insert-free device that can be employed as an electron source in electric propulsion applications.Electron-extraction characteristics of the RP... Inductively coupled radio-frequency(RF) plasma neutralizer(RPN) is an insert-free device that can be employed as an electron source in electric propulsion applications.Electron-extraction characteristics of the RPN are related to the bulk plasma parameters and the device's geometry.Therefore,the effects of different electron-extraction apertures and operational parameters upon the electron-extraction characteristics are investigated according to the global nonambipolar flow and sheath model.Moreover,these models can also be used to explain why the electron-extraction characteristics of the RPN strongly depend upon the formation of the anode spot.During the experimental study,two types of anode spots are observed.Each of them has unique characteristics of electron extraction.Moreover,the hysteresis of an anode spot is observed by changing the xenon volume-flow rates or the bias voltages.In addition,the rapid ignited method,gas-utilization factor,electron-extraction cost and other factors that need to be considered in the design of the RPN are also discussed. 展开更多
关键词 electron source plasma cathode rf neutralizer rf plasma anode spot
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部