Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1:1...Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1:1 at various IR irradiation temperatures T1 (from room temperature to 400℃). The refractive index, deposited ratio, and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T1, the crystalline seeds appear at T1= 300℃, and the films are amorphous at the temperature ranging from 27℃ to 400℃. AFM investigation shows that the roughness value of peak-valley of ITO thin film (Rp-v) and the surface microstructure of rio thin films have a close relation with T1. The IR irradiation results in a widening value of band-gap energy due to Burstein-Moss effect and the maximum visible transmittance shifts toward a shorter wavelength along with a decrease in the film's refractive index. The plasma wavelength and the refractive index of ITO thin films are relative to the T1. XPS investigation shows that the photoelectrolytic properties can be deteriorated by the sub-oxides. The deterioration can be decreased by increasing the oxygen flow rote (fo2), and the mole ratio of Sn/In in the samples reduces with an increase info2.展开更多
In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and...In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and polymer substrates. There are many ways to prepare metal containing DLC films deposited on polymeric film substrates, such as coatings from car- bonaceous precursors and some means that incorporate other elements. In this study, we in- vestigated both the surface and biocompatible properties of titanium containing DLC (Ti-DLC) films. The Ti-DLC films were prepared on the surface of poly (ethylene terephthalate) (PET) film as a function of the deposition power level using reactive sputtering technique. The films' hydrophilicity was studied by contact angle and surface energy tests. Their surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental chemical composition was analyzed using energy dispersive X-spectra (EDX) and X-ray photoelectron spectroscopy (XPS). Their blood and cell compatibility was studied by in vitro tests, including tests on platelet adhesion, thrombus formation, whole blood clotting time and osteoblast cell compatibility. Significant changes in the morphological and chemical composition of the Ti-DLC films were observed and found to be a function of the deposition level. These morphological and chemical changes reduced the interfacial tension between Ti-DLC and blood proteins as well as resisted the adhesion and activation of platelets on the surface of the Ti-DLC films. The cell compatibility results exhibited significant growth of osteoblast cells on the surface of Ti incorporated DLC film compared with that of DLC film surface.展开更多
Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were in...Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were investigated.SEM transversal images show that the substrate rotation produces dense columnar structures which were found to be better defined under substrate rotation.AFM images show that the surface particles of the samples formed under substrate rotation are smaller and denser than those of a stationary one,leading to smaller grain sizes.XRD results show that all films have hexagonal wurtzite structure and preferred c-axis orientation with a tensile stress along the c-axis.The average optical transmittance was above90%in UV-Vis region.The lowest resistivity value(8.5×10?3Ω·cm)was achieved atωS=0r/min,with a carrier concentration of1.8×1020cm?3,and a Hall mobility of4.19cm2/(V·s).For all other samples,the substrate rotation induced changes in the carrier concentration and Hall mobility which resulted in the increasing of electrical resistivity.These results indicate that the morphology,structure,optical and electrical properties of the AZO thin films are strongly affected by the substrate rotation speed.展开更多
In this study, the surfaces of NaCl particles were modified with metal films using the polygonal barrel-sputtering method. When Pt was sputtered on NaCl particles, the individual particles changed from white to metall...In this study, the surfaces of NaCl particles were modified with metal films using the polygonal barrel-sputtering method. When Pt was sputtered on NaCl particles, the individual particles changed from white to metallic. Characterization of the treated samples indicated that thin Pt metal films were uniformly deposited on the NaCl particles. Immersion of the treated NaCl particles in water revealed that they floated to the surface of the water with the increase in the immersion time, although their original cubic shapes remained unchanged. The floating phenomenon of the Pt-coated NaCl particles, as mentioned above, suggests that NaCl was dissolved by the permeation of water through invisible defects such as grain boundaries in the Pt films, leading to the formation of hollow particle-like materials. It should be noted that uniform film deposition on the NaCl particles could also be achieved by sputtering with Au or Cu. Based on the obtained results, our sputtering method allows uniform surface modification of water-soluble and water-reactive powders that cannot be treated by conventional wet process using water.展开更多
Undoped and copper(Cu)doped zinc oxide(Zn_(1-x)Cu_(x)O,where x=0-0.065)nano crystal thin films have been deposited on glass substrate via RF/DC reactive co-sputtering technique.The aim of this work is to investigate t...Undoped and copper(Cu)doped zinc oxide(Zn_(1-x)Cu_(x)O,where x=0-0.065)nano crystal thin films have been deposited on glass substrate via RF/DC reactive co-sputtering technique.The aim of this work is to investigate the crystal structure of ZnO and Cu doped ZnO thin films and also study the effect of Cu doping on optical band gap of ZnO thin films.The identification and confirmation of the crystallinity,film thickness and surface morphology of the nano range thin films are confirmed by using X-ray diffractometer(XRD),scanning electron microscope and atomic force microscope.The XRD peak at a diffractive angle of 34.44°and Miller indices at(002)confirms the ZnO thin films.Crystallite size of undoped ZnO thin films is 27 nm and decreases from 27 nm to 22 nm with increasing the atomic fraction of Cu(x_(Cu))in the ZnO thin films from 0 to 6.5%respectively,which is calculated from XRD(002)peaks.The different bonding information of all deposited films was investigated by Fourier transform infrared spectrometer in the range of wave number between 400 cm^(-1) to 4000 cm^(-1).Optical band gap energy of all deposited thin films was analyzed by ultraviolet visible spectrophotometer,which varies from 3.35 eV to 3.19 eV with the increase of x_(Cu) from 0 to 6.5%respectively.Urbach energy of the deposited thin films increases from 115 meV to 228 meV with the increase of x_(Cu) from 0 to 6.5% respectively.展开更多
Transparent conducting ZnO (zinc oxide) thin films with an average thickness of 130 nm were deposited on glass substrates at substrate temperature of 373 K by RF (radio frequency) sputtering and annealed in nitrog...Transparent conducting ZnO (zinc oxide) thin films with an average thickness of 130 nm were deposited on glass substrates at substrate temperature of 373 K by RF (radio frequency) sputtering and annealed in nitrogen atmosphere (samples S1, S2 and S3) and in open air (samples S5, S6 and S7) at 423 K, 573 K and 723 K for 60 minutes. S4 is reserved as the reference or the as-deposited sample (sample that has not been annealed). The electrical and structural properties of the films were investigated using four-point probe, XRD (X-ray diffraction) and SEM (scanning electron microscopy). The as-deposited sample (S4 or sample that has not been annealed) was found to have a resistivity of 11.0 ×10^-4 Ω·cm, while that of the annealed samples lies between 6.0 × 10^-4 Ω·cm and 3.5 × 10^-4 Ω·cm. The XRD analysis of the annealed films shows that they are crystalline with preferential orientation of (002) plane. Other data analyzed from the samples includes the grain size (1.5059 -1.8898 μm), strain (1.77%-0.11%), residual stress (4.13-0.26 GPa) and the dislocation density (0.4409/m2-0.2800/m2).展开更多
Bi_(3.25)La_(0.75)Ti_(3)O_(12)(BLT)thin films are promising materials used in non-volatile memories.In this work,BLT films were deposited on Pt(111)/Ti/SiO_(2)/Si substrates by rf-magnetron sputtering method followed ...Bi_(3.25)La_(0.75)Ti_(3)O_(12)(BLT)thin films are promising materials used in non-volatile memories.In this work,BLT films were deposited on Pt(111)/Ti/SiO_(2)/Si substrates by rf-magnetron sputtering method followed by annealing treatments.The microstructures of BLT thin films were investigated via X-ray diffraction(XRD),scanning electron microscopy(SEM)and atomic force microscopy(AFM).With the increase in annealing temperature,the grain size increased significantly and the preferred crystalline orientation changed.A well-saturated hysteresis loop with a superior remnant polarization of 15.4μC/cm^(2) was obtained for BLT thin films annealed at 700°C.The results show that the dielectric constant decreased with the increase in grain sizes.展开更多
基金This work was financially supported by the National Defence Science Council of China (NO. 5141002040JW0504) and the Excellent Ph.D Thesis Foundation of Huazhong University of Science and Technology (No. HUST2004-39).
文摘Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1:1 at various IR irradiation temperatures T1 (from room temperature to 400℃). The refractive index, deposited ratio, and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T1, the crystalline seeds appear at T1= 300℃, and the films are amorphous at the temperature ranging from 27℃ to 400℃. AFM investigation shows that the roughness value of peak-valley of ITO thin film (Rp-v) and the surface microstructure of rio thin films have a close relation with T1. The IR irradiation results in a widening value of band-gap energy due to Burstein-Moss effect and the maximum visible transmittance shifts toward a shorter wavelength along with a decrease in the film's refractive index. The plasma wavelength and the refractive index of ITO thin films are relative to the T1. XPS investigation shows that the photoelectrolytic properties can be deteriorated by the sub-oxides. The deterioration can be decreased by increasing the oxygen flow rote (fo2), and the mole ratio of Sn/In in the samples reduces with an increase info2.
文摘In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and polymer substrates. There are many ways to prepare metal containing DLC films deposited on polymeric film substrates, such as coatings from car- bonaceous precursors and some means that incorporate other elements. In this study, we in- vestigated both the surface and biocompatible properties of titanium containing DLC (Ti-DLC) films. The Ti-DLC films were prepared on the surface of poly (ethylene terephthalate) (PET) film as a function of the deposition power level using reactive sputtering technique. The films' hydrophilicity was studied by contact angle and surface energy tests. Their surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental chemical composition was analyzed using energy dispersive X-spectra (EDX) and X-ray photoelectron spectroscopy (XPS). Their blood and cell compatibility was studied by in vitro tests, including tests on platelet adhesion, thrombus formation, whole blood clotting time and osteoblast cell compatibility. Significant changes in the morphological and chemical composition of the Ti-DLC films were observed and found to be a function of the deposition level. These morphological and chemical changes reduced the interfacial tension between Ti-DLC and blood proteins as well as resisted the adhesion and activation of platelets on the surface of the Ti-DLC films. The cell compatibility results exhibited significant growth of osteoblast cells on the surface of Ti incorporated DLC film compared with that of DLC film surface.
文摘Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were investigated.SEM transversal images show that the substrate rotation produces dense columnar structures which were found to be better defined under substrate rotation.AFM images show that the surface particles of the samples formed under substrate rotation are smaller and denser than those of a stationary one,leading to smaller grain sizes.XRD results show that all films have hexagonal wurtzite structure and preferred c-axis orientation with a tensile stress along the c-axis.The average optical transmittance was above90%in UV-Vis region.The lowest resistivity value(8.5×10?3Ω·cm)was achieved atωS=0r/min,with a carrier concentration of1.8×1020cm?3,and a Hall mobility of4.19cm2/(V·s).For all other samples,the substrate rotation induced changes in the carrier concentration and Hall mobility which resulted in the increasing of electrical resistivity.These results indicate that the morphology,structure,optical and electrical properties of the AZO thin films are strongly affected by the substrate rotation speed.
文摘In this study, the surfaces of NaCl particles were modified with metal films using the polygonal barrel-sputtering method. When Pt was sputtered on NaCl particles, the individual particles changed from white to metallic. Characterization of the treated samples indicated that thin Pt metal films were uniformly deposited on the NaCl particles. Immersion of the treated NaCl particles in water revealed that they floated to the surface of the water with the increase in the immersion time, although their original cubic shapes remained unchanged. The floating phenomenon of the Pt-coated NaCl particles, as mentioned above, suggests that NaCl was dissolved by the permeation of water through invisible defects such as grain boundaries in the Pt films, leading to the formation of hollow particle-like materials. It should be noted that uniform film deposition on the NaCl particles could also be achieved by sputtering with Au or Cu. Based on the obtained results, our sputtering method allows uniform surface modification of water-soluble and water-reactive powders that cannot be treated by conventional wet process using water.
基金Maulana Azad National Fellowship(MANF)Scheme of University Grants Commission,New Delhi,India。
文摘Undoped and copper(Cu)doped zinc oxide(Zn_(1-x)Cu_(x)O,where x=0-0.065)nano crystal thin films have been deposited on glass substrate via RF/DC reactive co-sputtering technique.The aim of this work is to investigate the crystal structure of ZnO and Cu doped ZnO thin films and also study the effect of Cu doping on optical band gap of ZnO thin films.The identification and confirmation of the crystallinity,film thickness and surface morphology of the nano range thin films are confirmed by using X-ray diffractometer(XRD),scanning electron microscope and atomic force microscope.The XRD peak at a diffractive angle of 34.44°and Miller indices at(002)confirms the ZnO thin films.Crystallite size of undoped ZnO thin films is 27 nm and decreases from 27 nm to 22 nm with increasing the atomic fraction of Cu(x_(Cu))in the ZnO thin films from 0 to 6.5%respectively,which is calculated from XRD(002)peaks.The different bonding information of all deposited films was investigated by Fourier transform infrared spectrometer in the range of wave number between 400 cm^(-1) to 4000 cm^(-1).Optical band gap energy of all deposited thin films was analyzed by ultraviolet visible spectrophotometer,which varies from 3.35 eV to 3.19 eV with the increase of x_(Cu) from 0 to 6.5%respectively.Urbach energy of the deposited thin films increases from 115 meV to 228 meV with the increase of x_(Cu) from 0 to 6.5% respectively.
文摘Transparent conducting ZnO (zinc oxide) thin films with an average thickness of 130 nm were deposited on glass substrates at substrate temperature of 373 K by RF (radio frequency) sputtering and annealed in nitrogen atmosphere (samples S1, S2 and S3) and in open air (samples S5, S6 and S7) at 423 K, 573 K and 723 K for 60 minutes. S4 is reserved as the reference or the as-deposited sample (sample that has not been annealed). The electrical and structural properties of the films were investigated using four-point probe, XRD (X-ray diffraction) and SEM (scanning electron microscopy). The as-deposited sample (S4 or sample that has not been annealed) was found to have a resistivity of 11.0 ×10^-4 Ω·cm, while that of the annealed samples lies between 6.0 × 10^-4 Ω·cm and 3.5 × 10^-4 Ω·cm. The XRD analysis of the annealed films shows that they are crystalline with preferential orientation of (002) plane. Other data analyzed from the samples includes the grain size (1.5059 -1.8898 μm), strain (1.77%-0.11%), residual stress (4.13-0.26 GPa) and the dislocation density (0.4409/m2-0.2800/m2).
基金supported by the Research Foundation of Liaocheng University(No.318051939)Opening Project of Beijing Key Laboratory of Digital Stomatology(PKUSS20210301)+1 种基金Natural Science Foundation of Shandong Province of China(Nos.ZR2020ME031,ZR2020ME033)Innovation Team of Higher Educational Science and Technology Program in Shandong Province(No.2019KJA025).
文摘Bi_(3.25)La_(0.75)Ti_(3)O_(12)(BLT)thin films are promising materials used in non-volatile memories.In this work,BLT films were deposited on Pt(111)/Ti/SiO_(2)/Si substrates by rf-magnetron sputtering method followed by annealing treatments.The microstructures of BLT thin films were investigated via X-ray diffraction(XRD),scanning electron microscopy(SEM)and atomic force microscopy(AFM).With the increase in annealing temperature,the grain size increased significantly and the preferred crystalline orientation changed.A well-saturated hysteresis loop with a superior remnant polarization of 15.4μC/cm^(2) was obtained for BLT thin films annealed at 700°C.The results show that the dielectric constant decreased with the increase in grain sizes.