Hyperparameters play a vital impact in the performance of most machine learning algorithms.It is a challenge for traditional methods to con-figure hyperparameters of the capsule network to obtain high-performance manu...Hyperparameters play a vital impact in the performance of most machine learning algorithms.It is a challenge for traditional methods to con-figure hyperparameters of the capsule network to obtain high-performance manually.Some swarm intelligence or evolutionary computation algorithms have been effectively employed to seek optimal hyperparameters as a com-binatorial optimization problem.However,these algorithms are prone to get trapped in the local optimal solution as random search strategies are adopted.The inspiration for the hybrid rice optimization(HRO)algorithm is from the breeding technology of three-line hybrid rice in China,which has the advantages of easy implementation,less parameters and fast convergence.In the paper,genetic search is combined with the hybrid rice optimization algorithm(GHRO)and employed to obtain the optimal hyperparameter of the capsule network automatically,that is,a probability search technique and a hybridization strategy belong with the primary HRO.Thirteen benchmark functions are used to evaluate the performance of GHRO.Furthermore,the MNIST,Chest X-Ray(pneumonia),and Chest X-Ray(COVID-19&pneumonia)datasets are also utilized to evaluate the capsule network learnt by GHRO.The experimental results show that GHRO is an effective method for optimizing the hyperparameters of the capsule network,which is able to boost the performance of the capsule network on image classification.展开更多
Longley-Rice channel model modifies the atmospheric refraction by the equivalent earth radius method, which is simple calculation but is not accurate. As it only uses the horizontal difference, but does not make use o...Longley-Rice channel model modifies the atmospheric refraction by the equivalent earth radius method, which is simple calculation but is not accurate. As it only uses the horizontal difference, but does not make use of the vertical section information, it does not agree with the actual propagation path. The atmospheric refraction error correction method of the Longley-Rice channel model has been improved. The improved method makes use of the vertical section information sufficiently and maps the distance between the receiver and transmitter to the radio wave propagation distance, It can exactly reflect the infection of propagation distance for the radio wave propagation loss. It is predicted to be more close to the experimental results by simulation in comparison with the measured data. The effectiveness of improved methods is proved by simulation.展开更多
为快速、无损和准确地诊断水稻营养状况,开展了基于高光谱成像技术的寒地水稻叶片氮素含量预测研究。以不同施氮水平下的水稻叶片为研究对象,利用高光谱成像技术,分析拔节期水稻叶片光谱,采用全波段高光谱数据、连续投影算法及分段主成...为快速、无损和准确地诊断水稻营养状况,开展了基于高光谱成像技术的寒地水稻叶片氮素含量预测研究。以不同施氮水平下的水稻叶片为研究对象,利用高光谱成像技术,分析拔节期水稻叶片光谱,采用全波段高光谱数据、连续投影算法及分段主成分分析(segmented principal components analysis,SPCA)与相关分析(correlation analysis,CA)相结合的方法建立多种回归分析模型,并对模型进行检验和筛选。结果表明:随着施氮水平提高,水稻叶片反射率在可见光区域降低,在近红外区域升高。在校正集决定系数上,基于多元逐步回归分析的全波段模型较好,校正集决定系数为0.821,校正集均方根误差RMSEC=0.079;在预测集决定系数上,基于SPCA-CA结合多元回归分析的多变量单波段指数、差值指数、双差值指数模型较好,预测集决定系数为0.869,预测集均方根误差RMSEP=0.085。该研究结果为快速检测水稻叶片氮素含量及水稻生长期间精确施肥管理提供了参考。展开更多
基金supported by National Natural Science Foundation of China (Grant:41901296,62202147).
文摘Hyperparameters play a vital impact in the performance of most machine learning algorithms.It is a challenge for traditional methods to con-figure hyperparameters of the capsule network to obtain high-performance manually.Some swarm intelligence or evolutionary computation algorithms have been effectively employed to seek optimal hyperparameters as a com-binatorial optimization problem.However,these algorithms are prone to get trapped in the local optimal solution as random search strategies are adopted.The inspiration for the hybrid rice optimization(HRO)algorithm is from the breeding technology of three-line hybrid rice in China,which has the advantages of easy implementation,less parameters and fast convergence.In the paper,genetic search is combined with the hybrid rice optimization algorithm(GHRO)and employed to obtain the optimal hyperparameter of the capsule network automatically,that is,a probability search technique and a hybridization strategy belong with the primary HRO.Thirteen benchmark functions are used to evaluate the performance of GHRO.Furthermore,the MNIST,Chest X-Ray(pneumonia),and Chest X-Ray(COVID-19&pneumonia)datasets are also utilized to evaluate the capsule network learnt by GHRO.The experimental results show that GHRO is an effective method for optimizing the hyperparameters of the capsule network,which is able to boost the performance of the capsule network on image classification.
文摘Longley-Rice channel model modifies the atmospheric refraction by the equivalent earth radius method, which is simple calculation but is not accurate. As it only uses the horizontal difference, but does not make use of the vertical section information, it does not agree with the actual propagation path. The atmospheric refraction error correction method of the Longley-Rice channel model has been improved. The improved method makes use of the vertical section information sufficiently and maps the distance between the receiver and transmitter to the radio wave propagation distance, It can exactly reflect the infection of propagation distance for the radio wave propagation loss. It is predicted to be more close to the experimental results by simulation in comparison with the measured data. The effectiveness of improved methods is proved by simulation.
文摘为快速、无损和准确地诊断水稻营养状况,开展了基于高光谱成像技术的寒地水稻叶片氮素含量预测研究。以不同施氮水平下的水稻叶片为研究对象,利用高光谱成像技术,分析拔节期水稻叶片光谱,采用全波段高光谱数据、连续投影算法及分段主成分分析(segmented principal components analysis,SPCA)与相关分析(correlation analysis,CA)相结合的方法建立多种回归分析模型,并对模型进行检验和筛选。结果表明:随着施氮水平提高,水稻叶片反射率在可见光区域降低,在近红外区域升高。在校正集决定系数上,基于多元逐步回归分析的全波段模型较好,校正集决定系数为0.821,校正集均方根误差RMSEC=0.079;在预测集决定系数上,基于SPCA-CA结合多元回归分析的多变量单波段指数、差值指数、双差值指数模型较好,预测集决定系数为0.869,预测集均方根误差RMSEP=0.085。该研究结果为快速检测水稻叶片氮素含量及水稻生长期间精确施肥管理提供了参考。