Receptor-like kinases (RLKs) play crucial roles in cellular signal perception and propagation. To study the evolutionary relationships among RLKs in soybean, a large-scale expressed sequence tags (ESTs) survey for...Receptor-like kinases (RLKs) play crucial roles in cellular signal perception and propagation. To study the evolutionary relationships among RLKs in soybean, a large-scale expressed sequence tags (ESTs) survey for RLKs-related sequences was conducted. By doing BLAST analysis using our database and The Gene Index Database, 605 putative RLK genes were identified. Based on the phylogeny of the kinase domain, these soybean RLKs were classified into 58 different small subfamilies. The phylogenetic analysis of RLKs in soybean, rice and Arabidopsis showed that different subfamilies of RLKs had different functions and could have experienced different selective pressures.展开更多
Different from animals, sessile plants are equipped with a large receptor-like kinase(RLK) superfamily. RLKs are a family of single trans-membrane proteins with divergent N-terminal extracellular domains capped by a s...Different from animals, sessile plants are equipped with a large receptor-like kinase(RLK) superfamily. RLKs are a family of single trans-membrane proteins with divergent N-terminal extracellular domains capped by a signal peptide and C-terminal intracellular kinase. Researches in the last two decades have uncovered an increasing number of RLKs that regulate plant development, stress response and sexual reproduction, highlighting a dominant role of RLK signaling in cell-to-cell communications. Sexual reproduction in flowering plants is featured by interactions between the male gametophyte and the female tissues to facilitate sperm delivery and fertilization. Emerging evidences suggest that RLKs regulate almost every aspect of plant reproductive process, especially during pollination. Therefore, in this review we will focus mainly on the function and signaling of RLKs in plant male-female interaction and discuss the future prospects on these topics.展开更多
类受体激酶(receptor like kinase,RLK)参与调控植物几乎所有的生命活动,是植物生长发育和环境适应的“中央处理器”。该文对近年来国内外有关蔷薇科果树RLK基因鉴定、进化特征及其在各器官生长发育、非生物和生物逆境中的作用及调控机...类受体激酶(receptor like kinase,RLK)参与调控植物几乎所有的生命活动,是植物生长发育和环境适应的“中央处理器”。该文对近年来国内外有关蔷薇科果树RLK基因鉴定、进化特征及其在各器官生长发育、非生物和生物逆境中的作用及调控机制等方面的研究进展进行了综述。蔷薇科果树基因组中存在数目庞大的RLKs,不同树种间的RLK数目和各亚家族成员数目都存在较大差异,而且蔷薇科果树RLK存在极为普遍的部分重复和串联重复现象,是导致家族成员迅速变化的重要原因。有研究发现,一些RLKs调控蔷薇科果树器官发育和对环境的适应性。在器官发育方面,LRR-RLK亚家族成员调控根系发育,CrRLK1L、LysM-RLK和LRR-RLK亚家族部分成员参与调控果实发育,CrRLK1L亚家族成员参与调控花粉管发育,LRR-RLK、LysM-RLK、L-LEC-RLK和B-Lectin-RLK亚家族部分成员调控蔷薇科果树对生物逆境的适应。今后RLK功能研究可侧重于蔷薇科果树特色性状,通过提高目标基因的筛选和验证的效率,加速主效RLKs的筛选进程,并通过筛选主效RLKs诱导方式和加速分子育种进程等途径,将研究成果应用于实际生产。展开更多
Receptor-like kinases(RLKs) are essential for plant abiotic stress responses. Methylglyoxal(MG) is a cellular metabolite that is often considered to be a stress signal molecule. However, limited information is availab...Receptor-like kinases(RLKs) are essential for plant abiotic stress responses. Methylglyoxal(MG) is a cellular metabolite that is often considered to be a stress signal molecule. However, limited information is available about the relationship between RLKs and MG. Here, we addressed the function of a receptor-like kinase, Os ASLRK, in the MG response and content in rice. A typical MG-responsive element(AAAAAAAA) exists in the promoter region of the OsASLRK gene. RTqPCR analysis indicated that the transcript level of OsASLRK was significantly increased by exogenous MG in a time-and dosage-dependent fashion. GUS staining also confirmed that the expression of Os ASLRK in rice root was enhanced by exogenous MG treatment. Genetic analysis suggested that the Osaslrk mutant displays increased sensitivity to MG and it showed higher endogenous MG content under exogenous MG treatments, while OsASLRK-overexpressing rice plants showed the opposite phenotypes. Diaminobenzidine(DAB) staining, scavenging enzyme activities and GSH content assays indicate that OsASLRK regulates MG sensitivity and content via the elevation of antioxidative enzyme activities and alleviation of membrane damage. Therefore, our results provide new evidence illustrating the roles that receptor-like kinase Os ASLRK plays in MG regulation in rice.展开更多
The multifunctional secondary metabolites known as cyclic lipopeptides(CLPs),which are produced by a large variety of bacteria,have become a key category of plant immunity elicitors.Pseudomonas-CLPs(PsCLPs)are extreme...The multifunctional secondary metabolites known as cyclic lipopeptides(CLPs),which are produced by a large variety of bacteria,have become a key category of plant immunity elicitors.Pseudomonas-CLPs(PsCLPs)are extremely diverse in structure and biological activity.However,an understanding of CLP-plant structure–function interactions currently remains elusive.Here,we identify medpeptin,a novel CLP from Pseudomonas mediterranea that consists of 22 amino acids.Medpeptin is synthesized by a non-ribosomal peptide synthase(NRPS)gene cluster and regulated by a quorum-sensing system.Further research indicates that medpeptin does not exhibit antimicrobial activity;instead,it induces plant cell death immunity and confers resistance to bacterial infection.Comparative transcriptome analysis and virus-induced gene silencing(VIGS)reveal a set of immune signaling candidates involved in medpeptin perception.Silencing of a cell-wall leucine-rich repeat extensin protein(NbLRX3)or a receptor-like protein kinase(NbRLK25)—but not BAK1 or SGT1—compromises medpeptin-triggered cell death and resistance to pathogen infection in Nicotiana benthamiana.Our findings point to a noncanonical mechanism of CLP sensing and suggest perspectives for the development of plant disease resistance.展开更多
Receptor-like kinases(RLKs)are the most numerous signal transduction components in plants and play important roles in determining how different plants adapt to their ecological environments.Research on RLKs has focuse...Receptor-like kinases(RLKs)are the most numerous signal transduction components in plants and play important roles in determining how different plants adapt to their ecological environments.Research on RLKs has focused mainly on a small number of typical RLK members in a few model plants.There is an urgent need to study the composition,distribution,and evolution of RLKs at the holistic level to increase our understanding of how RLKs assist in the ecological adaptations of different plant species.In this study,we collected the genome assemblies of 528 plant species and constructed an RLK dataset.Using this dataset,we identified and characterized 524948 RLK family members.Each member underwent systematic topological classification and was assigned a gene ID based on a unified nomenclature system.Furthermore,we identified two novel extracellular domains in some RLKs,designated Xiao and Xiang.Evolutionary analysis of the RLK family revealed that the RLCK-XVII and RLCK-XII-2 classes were present exclusively in dicots,suggesting that diversification of RLKs between monocots and dicots may have led to differences in downstream cytoplasmic responses.We also used an interaction proteome to help empower data mining for inference of new RLK functions from a global perspective,with the ultimate goal of understanding how RLKs shape the adaptation of different plants to the environments/ecosystems.The assembled RLK dataset,together with annotations and analytical tools,forms an integrated foundation of multiomics data that is publicly accessible via the metaRLK web portal(http://metaRLK.biocloud.top).展开更多
Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding c...Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding climate-resilient crops. In this review,we summarize recent progress on understanding plant drought, salt, and cold stress responses, with a focus on signal perception and transduction by different protein kinases, especially sucrose nonfermenting1(SNF1)-related protein kinases(Sn RKs),mitogen-activated protein kinase(MAPK) cascades,calcium-dependent protein kinases(CDPKs/CPKs),and receptor-like kinases(RLKs). We also discuss future challenges in these research fields.展开更多
Plants have evolved multiple layers of defense against various pathogens in the environment. Receptor-like kinases/proteins (RLKs/RLPs) are on the front lines of the battle between plants and pathogens since they ar...Plants have evolved multiple layers of defense against various pathogens in the environment. Receptor-like kinases/proteins (RLKs/RLPs) are on the front lines of the battle between plants and pathogens since they are present at the plasma membrane and perceive signature molecules from either the invading pathogen or damaged plant tissue. With a few notable exceptions, most RLKs/RLPs are positive regulators of plant innate immunity. In this review, we summarize recently discovered RLKs/RLPs that are involved in plant defense responses against various classes of pathogens, We also describe what is currently known about the mechanisms of RLK-mediated initiation of signaling via protein-protein interactions and phosphorylation.展开更多
Embryogenesis,which establishes the basic body plan for the post-embryonic organs after stereotyped cell divisions,initiates the first step of the plant life cycle.Studies in the last two decades indicate that embryog...Embryogenesis,which establishes the basic body plan for the post-embryonic organs after stereotyped cell divisions,initiates the first step of the plant life cycle.Studies in the last two decades indicate that embryogenesis is a precisely controlled process,and any defect would result in abnormalities.Here we discuss the recent progresses,with a focus on the cellular pathways governing early embryogenesis in the model species Arabidopsis.展开更多
Plants employ a highly effective surveillance system to detect potential pathogens, which is critical for the success of land plants in an environment surrounded by numerous microbes. Recent efforts have led to the id...Plants employ a highly effective surveillance system to detect potential pathogens, which is critical for the success of land plants in an environment surrounded by numerous microbes. Recent efforts have led to the identification of a number of immune receptors and components of immune receptor complexes. It is now clear that receptor-like kinases (RLKs) and receptor-like proteins (RLPs) are key pattern-recognition receptors (PRRs) for microbe- and plant-derived molecular patterns that are associated with pathogen invasion. RLKs and RLPs involved in immune signaling belong to large gene families in plants and have undergone lineage specific expansion. Molecular evolution and population studies on phytopathogenic molecular signatures and their receptors have provided crucial insight into the co-evolution between plants and pathogens.展开更多
Brassinosteroids (BRs), a group of plant steroidal hormones, play critical roles in many aspects of plant growth and development. Previous studies showed that BRI1-mediated BR signaling regulates cell division and d...Brassinosteroids (BRs), a group of plant steroidal hormones, play critical roles in many aspects of plant growth and development. Previous studies showed that BRI1-mediated BR signaling regulates cell division and differentiation during Arabidopsis root development via interplaying with auxin and other phytohormones. Arabidopsis somatic embryogenesis receptor-like kinases (SERKs), as co-receptors of BRI1, were found to play a fundamental role in an early activation step of BR signaling pathway. Here we report a novel function of SERKs in regulating Arabidopsis root development. Genetic analyses indicated that SERKs control root growth mainly via a BR-independent pathway. Although BR signaling pathway is completely disrupted in the serkl bakl bkkl triple mutant, the root growth of the triple mutant is much severely damaged than the BR deficiency or signaling null mutants. More detailed analyses indicated that the triple mutant exhibited drastically reduced expression of a number of genes critical to polar auxin transport, cell cycle, endodermis development and root meristem differentiation, which were not observed in null BR biosynthesis mutant cpd and null BR signaling mutant bril-701.展开更多
Receptor-like protein kinases (RLKs) are a large group of transmembrane proteins playing critical roles in cell-cell and cell--environment communications. Based on extracellular domain structures, RLKs were classifi...Receptor-like protein kinases (RLKs) are a large group of transmembrane proteins playing critical roles in cell-cell and cell--environment communications. Based on extracellular domain structures, RLKs were classified into more than 21 subfamilies, among which leucine-rich repeat RLKs (LRR-RLKs) belong to the largest subfamily in plants such as Arabidopsis and rice. In Arabidopsis, there are approximately 223 LRR-RLKs, but only about 60 of which have been functionally described to date. To systematically investigate the roles of LRR-RLKs in regulating plant growth, development, and stress adaptations, we generated promoter::GUS transgenic plants for all 223 LRR-RLK genes in Arabidopsis and analyzed their detailed expression patterns at various developmental stages. The results provide valuable resources for functionally elucidating this large and essential signaling protein subfamily.展开更多
基金supported by the National Basic Research Program of China (No. 2004CB117200)the National High-Tech Project (No. 2006AA10Z18201)
文摘Receptor-like kinases (RLKs) play crucial roles in cellular signal perception and propagation. To study the evolutionary relationships among RLKs in soybean, a large-scale expressed sequence tags (ESTs) survey for RLKs-related sequences was conducted. By doing BLAST analysis using our database and The Gene Index Database, 605 putative RLK genes were identified. Based on the phylogeny of the kinase domain, these soybean RLKs were classified into 58 different small subfamilies. The phylogenetic analysis of RLKs in soybean, rice and Arabidopsis showed that different subfamilies of RLKs had different functions and could have experienced different selective pressures.
基金supported by the Ministry of Science and Technology of China(2013CB945103)the National Natural Science Foundation of China(31330053)
文摘Different from animals, sessile plants are equipped with a large receptor-like kinase(RLK) superfamily. RLKs are a family of single trans-membrane proteins with divergent N-terminal extracellular domains capped by a signal peptide and C-terminal intracellular kinase. Researches in the last two decades have uncovered an increasing number of RLKs that regulate plant development, stress response and sexual reproduction, highlighting a dominant role of RLK signaling in cell-to-cell communications. Sexual reproduction in flowering plants is featured by interactions between the male gametophyte and the female tissues to facilitate sperm delivery and fertilization. Emerging evidences suggest that RLKs regulate almost every aspect of plant reproductive process, especially during pollination. Therefore, in this review we will focus mainly on the function and signaling of RLKs in plant male-female interaction and discuss the future prospects on these topics.
文摘类受体激酶(receptor like kinase,RLK)参与调控植物几乎所有的生命活动,是植物生长发育和环境适应的“中央处理器”。该文对近年来国内外有关蔷薇科果树RLK基因鉴定、进化特征及其在各器官生长发育、非生物和生物逆境中的作用及调控机制等方面的研究进展进行了综述。蔷薇科果树基因组中存在数目庞大的RLKs,不同树种间的RLK数目和各亚家族成员数目都存在较大差异,而且蔷薇科果树RLK存在极为普遍的部分重复和串联重复现象,是导致家族成员迅速变化的重要原因。有研究发现,一些RLKs调控蔷薇科果树器官发育和对环境的适应性。在器官发育方面,LRR-RLK亚家族成员调控根系发育,CrRLK1L、LysM-RLK和LRR-RLK亚家族部分成员参与调控果实发育,CrRLK1L亚家族成员参与调控花粉管发育,LRR-RLK、LysM-RLK、L-LEC-RLK和B-Lectin-RLK亚家族部分成员调控蔷薇科果树对生物逆境的适应。今后RLK功能研究可侧重于蔷薇科果树特色性状,通过提高目标基因的筛选和验证的效率,加速主效RLKs的筛选进程,并通过筛选主效RLKs诱导方式和加速分子育种进程等途径,将研究成果应用于实际生产。
基金financially supported by the National Natural Science Foundation of China (U1704106, 3190142)the Doctoral Scientific Research Fund of Henan Agricultural University, China (30500561)the Open Innovation Project of Undergraduate Laboratory of Henan Agricultural University, China (KF1902)。
文摘Receptor-like kinases(RLKs) are essential for plant abiotic stress responses. Methylglyoxal(MG) is a cellular metabolite that is often considered to be a stress signal molecule. However, limited information is available about the relationship between RLKs and MG. Here, we addressed the function of a receptor-like kinase, Os ASLRK, in the MG response and content in rice. A typical MG-responsive element(AAAAAAAA) exists in the promoter region of the OsASLRK gene. RTqPCR analysis indicated that the transcript level of OsASLRK was significantly increased by exogenous MG in a time-and dosage-dependent fashion. GUS staining also confirmed that the expression of Os ASLRK in rice root was enhanced by exogenous MG treatment. Genetic analysis suggested that the Osaslrk mutant displays increased sensitivity to MG and it showed higher endogenous MG content under exogenous MG treatments, while OsASLRK-overexpressing rice plants showed the opposite phenotypes. Diaminobenzidine(DAB) staining, scavenging enzyme activities and GSH content assays indicate that OsASLRK regulates MG sensitivity and content via the elevation of antioxidative enzyme activities and alleviation of membrane damage. Therefore, our results provide new evidence illustrating the roles that receptor-like kinase Os ASLRK plays in MG regulation in rice.
基金funded by the National Key R&D Program of China(2022YFD1901300)the National Natural Science Foundation of China(31901932)+2 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202308 and Y2022PT12)the Beijing Innovation Consortium of Agriculture Research System(BAIC04-2022)the Science and Technology Programs of the Zunyi Tobacco(2021XM03)。
文摘The multifunctional secondary metabolites known as cyclic lipopeptides(CLPs),which are produced by a large variety of bacteria,have become a key category of plant immunity elicitors.Pseudomonas-CLPs(PsCLPs)are extremely diverse in structure and biological activity.However,an understanding of CLP-plant structure–function interactions currently remains elusive.Here,we identify medpeptin,a novel CLP from Pseudomonas mediterranea that consists of 22 amino acids.Medpeptin is synthesized by a non-ribosomal peptide synthase(NRPS)gene cluster and regulated by a quorum-sensing system.Further research indicates that medpeptin does not exhibit antimicrobial activity;instead,it induces plant cell death immunity and confers resistance to bacterial infection.Comparative transcriptome analysis and virus-induced gene silencing(VIGS)reveal a set of immune signaling candidates involved in medpeptin perception.Silencing of a cell-wall leucine-rich repeat extensin protein(NbLRX3)or a receptor-like protein kinase(NbRLK25)—but not BAK1 or SGT1—compromises medpeptin-triggered cell death and resistance to pathogen infection in Nicotiana benthamiana.Our findings point to a noncanonical mechanism of CLP sensing and suggest perspectives for the development of plant disease resistance.
基金supported by startup funds provided by Hunan Universitya database development fund provided by Suzhou Tributary Biologics Co.Ltd.,+2 种基金grants supported by the National Key R&D Program of China(2023YFD1401100)the Natural Science Foundation of China(32070769,32370757,and 32201712)the Science and Technology Innovation Program of Hunan Province(2021JJ10015,2021JJ30101,2023JJ40131,and 2023ZJ1080).
文摘Receptor-like kinases(RLKs)are the most numerous signal transduction components in plants and play important roles in determining how different plants adapt to their ecological environments.Research on RLKs has focused mainly on a small number of typical RLK members in a few model plants.There is an urgent need to study the composition,distribution,and evolution of RLKs at the holistic level to increase our understanding of how RLKs assist in the ecological adaptations of different plant species.In this study,we collected the genome assemblies of 528 plant species and constructed an RLK dataset.Using this dataset,we identified and characterized 524948 RLK family members.Each member underwent systematic topological classification and was assigned a gene ID based on a unified nomenclature system.Furthermore,we identified two novel extracellular domains in some RLKs,designated Xiao and Xiang.Evolutionary analysis of the RLK family revealed that the RLCK-XVII and RLCK-XII-2 classes were present exclusively in dicots,suggesting that diversification of RLKs between monocots and dicots may have led to differences in downstream cytoplasmic responses.We also used an interaction proteome to help empower data mining for inference of new RLK functions from a global perspective,with the ultimate goal of understanding how RLKs shape the adaptation of different plants to the environments/ecosystems.The assembled RLK dataset,together with annotations and analytical tools,forms an integrated foundation of multiomics data that is publicly accessible via the metaRLK web portal(http://metaRLK.biocloud.top).
基金supported by grants from the Natural National Science Foundation of China (31730007 and 31921001)the Beijing Outstanding University Discipline Program。
文摘Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding climate-resilient crops. In this review,we summarize recent progress on understanding plant drought, salt, and cold stress responses, with a focus on signal perception and transduction by different protein kinases, especially sucrose nonfermenting1(SNF1)-related protein kinases(Sn RKs),mitogen-activated protein kinase(MAPK) cascades,calcium-dependent protein kinases(CDPKs/CPKs),and receptor-like kinases(RLKs). We also discuss future challenges in these research fields.
文摘Plants have evolved multiple layers of defense against various pathogens in the environment. Receptor-like kinases/proteins (RLKs/RLPs) are on the front lines of the battle between plants and pathogens since they are present at the plasma membrane and perceive signature molecules from either the invading pathogen or damaged plant tissue. With a few notable exceptions, most RLKs/RLPs are positive regulators of plant innate immunity. In this review, we summarize recently discovered RLKs/RLPs that are involved in plant defense responses against various classes of pathogens, We also describe what is currently known about the mechanisms of RLK-mediated initiation of signaling via protein-protein interactions and phosphorylation.
基金the Chinese Academy of Sciences(No.KSCX2-YW-N-048)the National Natural Sciences Foundation of China(Grant Nos.30830063,30921003).
文摘Embryogenesis,which establishes the basic body plan for the post-embryonic organs after stereotyped cell divisions,initiates the first step of the plant life cycle.Studies in the last two decades indicate that embryogenesis is a precisely controlled process,and any defect would result in abnormalities.Here we discuss the recent progresses,with a focus on the cellular pathways governing early embryogenesis in the model species Arabidopsis.
基金supported by grants from Chinese Natural Science Foundation (31230007)Chinese Ministry of Science and Technology (2011CB1007002011CB100702) to J.M.Z
文摘Plants employ a highly effective surveillance system to detect potential pathogens, which is critical for the success of land plants in an environment surrounded by numerous microbes. Recent efforts have led to the identification of a number of immune receptors and components of immune receptor complexes. It is now clear that receptor-like kinases (RLKs) and receptor-like proteins (RLPs) are key pattern-recognition receptors (PRRs) for microbe- and plant-derived molecular patterns that are associated with pathogen invasion. RLKs and RLPs involved in immune signaling belong to large gene families in plants and have undergone lineage specific expansion. Molecular evolution and population studies on phytopathogenic molecular signatures and their receptors have provided crucial insight into the co-evolution between plants and pathogens.
基金supported by National Natural Science Foundation of China Grant 90917019(to J.L.)National Basic Research Program of China Grant 2011CB915401(to J.L.)China Postdoctoral Science Foundation Grant 2011M501491(to J.D.)
文摘Brassinosteroids (BRs), a group of plant steroidal hormones, play critical roles in many aspects of plant growth and development. Previous studies showed that BRI1-mediated BR signaling regulates cell division and differentiation during Arabidopsis root development via interplaying with auxin and other phytohormones. Arabidopsis somatic embryogenesis receptor-like kinases (SERKs), as co-receptors of BRI1, were found to play a fundamental role in an early activation step of BR signaling pathway. Here we report a novel function of SERKs in regulating Arabidopsis root development. Genetic analyses indicated that SERKs control root growth mainly via a BR-independent pathway. Although BR signaling pathway is completely disrupted in the serkl bakl bkkl triple mutant, the root growth of the triple mutant is much severely damaged than the BR deficiency or signaling null mutants. More detailed analyses indicated that the triple mutant exhibited drastically reduced expression of a number of genes critical to polar auxin transport, cell cycle, endodermis development and root meristem differentiation, which were not observed in null BR biosynthesis mutant cpd and null BR signaling mutant bril-701.
文摘Receptor-like protein kinases (RLKs) are a large group of transmembrane proteins playing critical roles in cell-cell and cell--environment communications. Based on extracellular domain structures, RLKs were classified into more than 21 subfamilies, among which leucine-rich repeat RLKs (LRR-RLKs) belong to the largest subfamily in plants such as Arabidopsis and rice. In Arabidopsis, there are approximately 223 LRR-RLKs, but only about 60 of which have been functionally described to date. To systematically investigate the roles of LRR-RLKs in regulating plant growth, development, and stress adaptations, we generated promoter::GUS transgenic plants for all 223 LRR-RLK genes in Arabidopsis and analyzed their detailed expression patterns at various developmental stages. The results provide valuable resources for functionally elucidating this large and essential signaling protein subfamily.