Objective: B-cell lymphoma 2 (Bcl-2) is an important member of the Bcl-2 family of proteins that regulate the induction of apoptosis. This study aims to investigate whether Bcl-2 small interfering RNA (siRNA) combined...Objective: B-cell lymphoma 2 (Bcl-2) is an important member of the Bcl-2 family of proteins that regulate the induction of apoptosis. This study aims to investigate whether Bcl-2 small interfering RNA (siRNA) combined with miR-15a oligonucleotides (ODN) could enhance methotrexate (MTX)-induced apoptosis in Raji cells. Methods: Chemically synthesized miR-15a ODN and Bcl-2 siRNA were transfected in Raji cells by using a HiPerFect Transfection Reagent and then combined with MTX. Expression levels of Bcl-2 protein were detected by Western blot. Cell proliferation was determined by CCK8 assay. The rate of cell apoptosis was determined by Annexin V/PI double staining. The morphology of apoptotic cells was observed by Hoechst-33 258 staining. Results: After the cells were transfected with miR-15a ODN combined with Bcl-2 siRNA, Bcl-2 protein levels were evidently decreased. CCK8 assay showed that cell proliferation was significantly decreased and was significantly lower in miR-15a ODN combined with Bcl-2 siRNA plus MTX group than in miR-15a ODN with methotrexate group, Bcl- 2 siRNA with MTX group, and single MTX group (P<0.05). Hoechst 33258 staining revealed numerous apoptotic cells. AnnexinV/PI double staining showed that the apoptotic rates were (13.13±1.60)%, (34.47±2.96)%, (32.87±3.48)%, and (45.47±2.16)% in MTX, Bcl-2 siRNA plus MTX, miR-15a ODN plus MTX, and miR-15a ODN combined with Bcl- 2 siRNA plus MTX groups, respectively. Among these groups, the apoptotic rate of miR-15a ODN combined with Bcl-2 siRNA plus MTX group was the highest; this apoptotic rate was also significantly different from that of miR-15a ODN or Bcl-2 siRNA plus MTX (P<0.05). Conclusions: Bcl-2 siRNA combined with miR-15a ODN could enhance MTX-induced apoptosis in Raji cells. Bcl-2 siRNA and miR-15a combined with MTX may be a useful approach to improve the treatment effects on lymphoma.展开更多
AIM: To investigate synergism of inhibition of telomerase activity and proliferation of human colon cancer cells by combination of telomerase antisense oligonucleotides (ASODNs) simultaneously targeting human telomera...AIM: To investigate synergism of inhibition of telomerase activity and proliferation of human colon cancer cells by combination of telomerase antisense oligonucleotides (ASODNs) simultaneously targeting human telomerase RNA (hTR) and human telomerase reverse transcriptase (hTERT) in vitro. METHODS: ASODN of hTR and ASODN of hTERT were transfected into human colon cancer SW480 cells by liposomal transfection reagents. Telomerase activity of SW480 cells was examined using telomeric repeat amplification protocol (TRAP)-enzyme-linked immunosorbent assay (PCR-ELISA). Proliferation activity of SW480 cells was tested by methyl thiazolyl tetrazolium assay. Apoptosis and cell cycle were analyzed by flow cytometry. RESULTS: The telomerase activity and cell survival rate in SW480 cells transfected with 0.2 μmol/L of ASODN of hTR or ASODN of hTERT for 24-72 h were significantly decreased in a time-dependent manner compared with those after treatment with sense oligonucleotides and untreated (telomerase activity: 24 h, 73%, 74% vs99%, 98%; 48 h, 61%, 55% vs98%, 99%; 72 h, 41%, 37% vs 99%, 97%; P<0.01; cell survival rate: 24 h, 88%, 86% vs594%, 98%; 48 h, 49%, 47% vs94%, 97%; 72 h, 44%, 42% vs92%, 96%; P<0.01). Moreover, the telomerase activity and the cell survival rate in SW480 cells treated by the combination of telomerase anti-hTR and anti-hTERT were more significantly suppressed than single anti-hTR or anti-hTERT (telomerase activity: 24 h, 59% vs 73%, 74%; 48 h, 43% vs61%, 55%; 72 h, 18% vs41%, 37%; P<0.01; cell survival rate: 24 h, 64% vs88%, 86%; 48 h, 37% vs49%, 47%; 72 h, 25% vs44%, 42%; P<0.01). Meanwhile, the apoptosis rates in the combination group were markedly increased compared with those in the single group (24 h, 18.0% vs7.2%, 7.4%; 48 h, 23.0% vs13.0%, 14.0%; 72 h, 28.6% vs 13.2%, 13.75; P<0.01). Cells in combination group were arrested at G0/G1 phase. CONCLUSION: Telomerase anti-hRT and anti-hTERT suppress telomerase activity, and inhibit growth of human colon cancer cells probably via induction of apoptosis and retardation of cell cycle. Additionally, combined use of telomerase ASODNs targeting both hTR and hTERT yields synergistic action selective for human colon cancer.展开更多
AIM: To observe the inhibition of antisense oligonucleotides (asON) phosphorthioate to the tissue inhibitors metalloproteinase-1 (TIMP-1) gene and protein expression in the liver tissue of immunologically induced hepa...AIM: To observe the inhibition of antisense oligonucleotides (asON) phosphorthioate to the tissue inhibitors metalloproteinase-1 (TIMP-1) gene and protein expression in the liver tissue of immunologically induced hepatic fibrosis rats. The possibility of reversing hepatic fibrosis through gene therapy was observed. METHODS: Human serum albumin (HSA) was used to attack rats, as hepatic fibrosis model, in which asONs were used to block the gene and protein expressing TIMP-1. According to the analysis of modulator, structure protein, coding series of TIMP-1 genome, we designed four different asONs. These asONs were injected into the hepatic fibrosis models through coccygeal vein. The results was observed by RT-PCR for measuring TIMP-1 mRNA expression, immunohistochemistry and in situ hybridization for collagen I, II, special staining of collagen fiber, and electron microscopic examination. RESULTS: Hepatic fibrosis could last within 363 days in our modified model. The expressing level of TIMP-1 was high during hepatic fibrosis process. It has been proved by the immunohistochemical and the electron microscopic examination that the asON phosphorthioate of TIMP-1 could exactly express in vivo. The effect of colchicine was demonstrated to inhibit the expressing level of mRNA and the content of collagen I, III in the liver of experimental hepatic fibrosis rats. However, the electron microscopy research and the pathologic grading of hepatic fibrosis showed that there was no significant difference between the treatment group and the model group (P】 0.05). CONCLUSION: The experimental rat model of hepatic fibrosis is one of the preferable models to estimate the curative effect of anti-hepatic fibrosis drugs. The asON phosphorthioate of TIMP-1 could block the gene and protein expression of TIMP-1 in the liver of experimental hepatic fibrosis rats at the mRNA level. It is possible to reverse hepatic fibrosis, and it is expected to study a new drug of antihepatic fibrosis on the genetic level. Colchicine has very limited therapeutic effect on hepatic fibrosis, furthermore, its toxicity and side effects are obvious.展开更多
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer’s disease. The growing aging population is a significant healthcare problem globally that res...Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer’s disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes(e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA-and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.展开更多
At the moment<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span>...At the moment<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> we see a great interest for application of Anti Sense Oligonucleotides</span><span style="font-family:Verdana;"> (ASOs) </span><span style="font-family:Verdana;">in order to regulate the expression of genes related to certain diseases. These nucleotides obtained a number of fascinating properties by means of chemical manipulation of natural DNA and RNA under conservation of Watson-Crick base-pairing. About 35 years ago for our research in this field</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> we selected synthetically (short) </span><i><span style="font-family:Verdana;">phosphate-methylated</span></i><span style="font-family:Verdana;"> DNA and RNA. It was concluded that there is an exclusive selection in hybridization affinity with natural DNA and RNA. These (bio)chemical and physical-chemical properties are extensively published. ASOs have found their </span><span style="font-family:Verdana;">way in public health as is clearly shown in the treatment of (progressive)</span><span style="font-family:Verdana;"> neurological diseases. We focus specifically on the past, present and future of the </span><span style="font-family:Verdana;">phosphate-methylated oligonucleotides, illustrated with different research</span><span style="font-family:Verdana;"> stu</span><span style="font-family:Verdana;">dies in chemistry and biophysics. A new field of application of modified</span><span style="font-family:Verdana;"> DNAs is based on interactive improvements of sensitivity and specificity of nanowire field effect transistor gene chip by designing phosphate-methylated DNA as probe.</span></span></span></span>展开更多
Double-stranded RNA-mediated interference (RNAi), antisense oligonucleotides (ASO), and ribozymes have excellent specificity to their target oncogenic mRNA. They also seem to show great promise when it comes to treati...Double-stranded RNA-mediated interference (RNAi), antisense oligonucleotides (ASO), and ribozymes have excellent specificity to their target oncogenic mRNA. They also seem to show great promise when it comes to treating cancer. The problem is that RNAi, ASO, and ribozymes have poor stability and are constantly being degraded by nucleases. Researchers have made some efforts to increase antisense oligonucleotides’ stability by creating phospharimidate and Phosphorothioate. Currently, ribozymes, antisense oligonucleotides, and (RNAi) are the three main methods used to target RNA. These methods are currently undergoing clinical trials for the purpose of focusing on specific RNAs involved in disorders like cancer and neurodegeneration. In fact, ASOs that target amyotrophic lateral sclerosis and spinal muscular atrophy have produced promising results in clinical trials. The formation of chemical alterations that boost affinity and selectivity while reducing noxiousness owing to off-target impacts are two benefits of ASOs. Another benefit is increased affinity. With a focus on RNAi and ASOs, this review illustrated the main therapeutic strategies of RNA therapy now in use.展开更多
目的观察疱疹病毒2型潜伏相关转录子开放阅读框架(HSV-2 LAT ORF)在病毒潜伏感染激活中的作用。方法体外建立HSV-2潜伏感染及复发的神经细胞模型,对病毒在细胞中的潜伏和激发进行PCR验证及测序;设计针对LAT ORF的siRNA,激活诱导后转染SH...目的观察疱疹病毒2型潜伏相关转录子开放阅读框架(HSV-2 LAT ORF)在病毒潜伏感染激活中的作用。方法体外建立HSV-2潜伏感染及复发的神经细胞模型,对病毒在细胞中的潜伏和激发进行PCR验证及测序;设计针对LAT ORF的siRNA,激活诱导后转染SH-SY5Y细胞,检测转染前后LAT ORF的表达改变;制备HSV-2基因表达谱芯片,利用芯片分析抑制LAT ORF后病毒基因表达的改变。结果在人神经母细胞瘤细胞株SH-SY5Y上成功建立了HSV-2潜伏感染及激活的细胞模型,LAT、gG基因PCR扩增及电泳结果证实了病毒在细胞中的潜伏及激活;LAT ORF-siRNA转染细胞24、36、48h后,LAT ORF mRNA的表达水平分别降低了39%、51%和60%。基因芯片分析干扰后病毒基因表达,共有28个基因出现差异表达,其中24个基因下调,4个基因上调。结论 LAT ORF在HSV-2潜伏感染激活中发挥了重要作用,为下一步分析LAT在病毒潜伏激活中的调控机制奠定了基础。展开更多
基金supported by the Overseas Chinese Affairs Office of the State Council Key Discipline Construction Fund (Grant No. 51205002)the Guangdong Province Key Foundation of Science and Technology Program (Grant No.2009B0507000029)+1 种基金Major Research Plan of the National Natural Science Foundation of China (Cultivating project, Grant No. 91129720)the National Natural Science Foundation of China (Grant No. 81170496)
文摘Objective: B-cell lymphoma 2 (Bcl-2) is an important member of the Bcl-2 family of proteins that regulate the induction of apoptosis. This study aims to investigate whether Bcl-2 small interfering RNA (siRNA) combined with miR-15a oligonucleotides (ODN) could enhance methotrexate (MTX)-induced apoptosis in Raji cells. Methods: Chemically synthesized miR-15a ODN and Bcl-2 siRNA were transfected in Raji cells by using a HiPerFect Transfection Reagent and then combined with MTX. Expression levels of Bcl-2 protein were detected by Western blot. Cell proliferation was determined by CCK8 assay. The rate of cell apoptosis was determined by Annexin V/PI double staining. The morphology of apoptotic cells was observed by Hoechst-33 258 staining. Results: After the cells were transfected with miR-15a ODN combined with Bcl-2 siRNA, Bcl-2 protein levels were evidently decreased. CCK8 assay showed that cell proliferation was significantly decreased and was significantly lower in miR-15a ODN combined with Bcl-2 siRNA plus MTX group than in miR-15a ODN with methotrexate group, Bcl- 2 siRNA with MTX group, and single MTX group (P<0.05). Hoechst 33258 staining revealed numerous apoptotic cells. AnnexinV/PI double staining showed that the apoptotic rates were (13.13±1.60)%, (34.47±2.96)%, (32.87±3.48)%, and (45.47±2.16)% in MTX, Bcl-2 siRNA plus MTX, miR-15a ODN plus MTX, and miR-15a ODN combined with Bcl- 2 siRNA plus MTX groups, respectively. Among these groups, the apoptotic rate of miR-15a ODN combined with Bcl-2 siRNA plus MTX group was the highest; this apoptotic rate was also significantly different from that of miR-15a ODN or Bcl-2 siRNA plus MTX (P<0.05). Conclusions: Bcl-2 siRNA combined with miR-15a ODN could enhance MTX-induced apoptosis in Raji cells. Bcl-2 siRNA and miR-15a combined with MTX may be a useful approach to improve the treatment effects on lymphoma.
基金Supported by the Science and Research Foundation of Bureau of Health, Hunan Province, China, No. Y02-083
文摘AIM: To investigate synergism of inhibition of telomerase activity and proliferation of human colon cancer cells by combination of telomerase antisense oligonucleotides (ASODNs) simultaneously targeting human telomerase RNA (hTR) and human telomerase reverse transcriptase (hTERT) in vitro. METHODS: ASODN of hTR and ASODN of hTERT were transfected into human colon cancer SW480 cells by liposomal transfection reagents. Telomerase activity of SW480 cells was examined using telomeric repeat amplification protocol (TRAP)-enzyme-linked immunosorbent assay (PCR-ELISA). Proliferation activity of SW480 cells was tested by methyl thiazolyl tetrazolium assay. Apoptosis and cell cycle were analyzed by flow cytometry. RESULTS: The telomerase activity and cell survival rate in SW480 cells transfected with 0.2 μmol/L of ASODN of hTR or ASODN of hTERT for 24-72 h were significantly decreased in a time-dependent manner compared with those after treatment with sense oligonucleotides and untreated (telomerase activity: 24 h, 73%, 74% vs99%, 98%; 48 h, 61%, 55% vs98%, 99%; 72 h, 41%, 37% vs 99%, 97%; P<0.01; cell survival rate: 24 h, 88%, 86% vs594%, 98%; 48 h, 49%, 47% vs94%, 97%; 72 h, 44%, 42% vs92%, 96%; P<0.01). Moreover, the telomerase activity and the cell survival rate in SW480 cells treated by the combination of telomerase anti-hTR and anti-hTERT were more significantly suppressed than single anti-hTR or anti-hTERT (telomerase activity: 24 h, 59% vs 73%, 74%; 48 h, 43% vs61%, 55%; 72 h, 18% vs41%, 37%; P<0.01; cell survival rate: 24 h, 64% vs88%, 86%; 48 h, 37% vs49%, 47%; 72 h, 25% vs44%, 42%; P<0.01). Meanwhile, the apoptosis rates in the combination group were markedly increased compared with those in the single group (24 h, 18.0% vs7.2%, 7.4%; 48 h, 23.0% vs13.0%, 14.0%; 72 h, 28.6% vs 13.2%, 13.75; P<0.01). Cells in combination group were arrested at G0/G1 phase. CONCLUSION: Telomerase anti-hRT and anti-hTERT suppress telomerase activity, and inhibit growth of human colon cancer cells probably via induction of apoptosis and retardation of cell cycle. Additionally, combined use of telomerase ASODNs targeting both hTR and hTERT yields synergistic action selective for human colon cancer.
基金Supported by the Postdoctoral Science Foundation of China(No.1999-10 State Postdoctoral Foundation Commission)
文摘AIM: To observe the inhibition of antisense oligonucleotides (asON) phosphorthioate to the tissue inhibitors metalloproteinase-1 (TIMP-1) gene and protein expression in the liver tissue of immunologically induced hepatic fibrosis rats. The possibility of reversing hepatic fibrosis through gene therapy was observed. METHODS: Human serum albumin (HSA) was used to attack rats, as hepatic fibrosis model, in which asONs were used to block the gene and protein expressing TIMP-1. According to the analysis of modulator, structure protein, coding series of TIMP-1 genome, we designed four different asONs. These asONs were injected into the hepatic fibrosis models through coccygeal vein. The results was observed by RT-PCR for measuring TIMP-1 mRNA expression, immunohistochemistry and in situ hybridization for collagen I, II, special staining of collagen fiber, and electron microscopic examination. RESULTS: Hepatic fibrosis could last within 363 days in our modified model. The expressing level of TIMP-1 was high during hepatic fibrosis process. It has been proved by the immunohistochemical and the electron microscopic examination that the asON phosphorthioate of TIMP-1 could exactly express in vivo. The effect of colchicine was demonstrated to inhibit the expressing level of mRNA and the content of collagen I, III in the liver of experimental hepatic fibrosis rats. However, the electron microscopy research and the pathologic grading of hepatic fibrosis showed that there was no significant difference between the treatment group and the model group (P】 0.05). CONCLUSION: The experimental rat model of hepatic fibrosis is one of the preferable models to estimate the curative effect of anti-hepatic fibrosis drugs. The asON phosphorthioate of TIMP-1 could block the gene and protein expression of TIMP-1 in the liver of experimental hepatic fibrosis rats at the mRNA level. It is possible to reverse hepatic fibrosis, and it is expected to study a new drug of antihepatic fibrosis on the genetic level. Colchicine has very limited therapeutic effect on hepatic fibrosis, furthermore, its toxicity and side effects are obvious.
文摘Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer’s disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes(e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA-and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
文摘At the moment<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> we see a great interest for application of Anti Sense Oligonucleotides</span><span style="font-family:Verdana;"> (ASOs) </span><span style="font-family:Verdana;">in order to regulate the expression of genes related to certain diseases. These nucleotides obtained a number of fascinating properties by means of chemical manipulation of natural DNA and RNA under conservation of Watson-Crick base-pairing. About 35 years ago for our research in this field</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> we selected synthetically (short) </span><i><span style="font-family:Verdana;">phosphate-methylated</span></i><span style="font-family:Verdana;"> DNA and RNA. It was concluded that there is an exclusive selection in hybridization affinity with natural DNA and RNA. These (bio)chemical and physical-chemical properties are extensively published. ASOs have found their </span><span style="font-family:Verdana;">way in public health as is clearly shown in the treatment of (progressive)</span><span style="font-family:Verdana;"> neurological diseases. We focus specifically on the past, present and future of the </span><span style="font-family:Verdana;">phosphate-methylated oligonucleotides, illustrated with different research</span><span style="font-family:Verdana;"> stu</span><span style="font-family:Verdana;">dies in chemistry and biophysics. A new field of application of modified</span><span style="font-family:Verdana;"> DNAs is based on interactive improvements of sensitivity and specificity of nanowire field effect transistor gene chip by designing phosphate-methylated DNA as probe.</span></span></span></span>
文摘Double-stranded RNA-mediated interference (RNAi), antisense oligonucleotides (ASO), and ribozymes have excellent specificity to their target oncogenic mRNA. They also seem to show great promise when it comes to treating cancer. The problem is that RNAi, ASO, and ribozymes have poor stability and are constantly being degraded by nucleases. Researchers have made some efforts to increase antisense oligonucleotides’ stability by creating phospharimidate and Phosphorothioate. Currently, ribozymes, antisense oligonucleotides, and (RNAi) are the three main methods used to target RNA. These methods are currently undergoing clinical trials for the purpose of focusing on specific RNAs involved in disorders like cancer and neurodegeneration. In fact, ASOs that target amyotrophic lateral sclerosis and spinal muscular atrophy have produced promising results in clinical trials. The formation of chemical alterations that boost affinity and selectivity while reducing noxiousness owing to off-target impacts are two benefits of ASOs. Another benefit is increased affinity. With a focus on RNAi and ASOs, this review illustrated the main therapeutic strategies of RNA therapy now in use.