Background:Glioma is a kind of tumor that easily deteriorates and originates from glial cells in nerve tissue.Honokiol is a bisphenol compound that is an essential monomeric compound extracted from the roots and bark ...Background:Glioma is a kind of tumor that easily deteriorates and originates from glial cells in nerve tissue.Honokiol is a bisphenol compound that is an essential monomeric compound extracted from the roots and bark of Magnoliaceae plants.It also has anti-infection,antitumor,and immunomodulatory effects.In this study,we found that honokiol induces cell apoptosis in the human glioma cell lines U87-MG and U251-MG.However,the mechanism through which honokiol regulates glioma cell apoptosis is still unknown.Methods:We performed RNA-seq analysis of U251-MG cells treated with honokiol and control cells.Protein-protein interaction(PPI)network analysis was performed,and the 10 top hub unigenes were examined via real-time quantitative PCR.Furthermore,MAPK signaling and ferroptosis were detected via western blotting.Results:332 differentially expressed genes(DEGs)were found,comprising 163 increased and 169 decreased genes.Analysis of the DEGs revealed that various biological processes were enriched,including‘response to hypoxia’,‘cerebellum development cellular response to hypoxia,’‘iron ion binding,’‘oxygen transporter activity,’‘oxygen binding,’‘ferric iron binding,’and‘structural constituent of cytoskeleton.’Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis revealed that the DEGs were enriched in the following pathways:‘mitogen-activated protein kinases(MAPK)’,‘Hypoxia-inducible factor 1(HIF-1)’,‘ferroptosis,’‘Peroxisome proliferator-activated receptor(PPAR),’‘Phosphatidylinositol-4,5-bisphosphate 3-kinase(PI3K)-protein kinase B(Akt),’and‘phagosome.’Among these pathways,the MAPK signaling pathway and ferroptosis were verified.Conclusion:This study revealed the potential mechanism by which honokiol induces apoptosis and provided a comprehensive analysis of DEGs in honokiol-treated U251-MG cells and the associated signaling pathways.These data could lead to new ideas for future research and therapy for patients with glioma.展开更多
Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) ...Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) with low(LS) and high seed-setting rates(HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4-5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes(DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS-specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as OsPME35 and OsPLL9, showed similar expression patterns, with higher levels in HS pistils pre-pollination. Os02g0467600, similar to cinnamate 4-hydroxylase gene(CYP73), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that OsPME35, OsPLL9, and Os02g0467600 contribute to prezygotic isolation by potentially modifying the stigma cell wall(OsPME35 and OsPLL9) and controlling later processes such as pollen-stigma adhesion(Os02g0467600) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.展开更多
Watermelon is a highly cultivated fruit crop renowned for its quality properties of fruit flesh.Among various quality factors,fruit flesh firmness is a crucial quality parameter influencing the fruit texture,shelf lif...Watermelon is a highly cultivated fruit crop renowned for its quality properties of fruit flesh.Among various quality factors,fruit flesh firmness is a crucial quality parameter influencing the fruit texture,shelf life and its commercial value.The auxin/indole-3-acetic acid(Aux/IAA)plays a significant role in fruit development and ripening of non-climacteric fruits.However,the regulatory mechanism of Aux/IAA in controlling fruit flesh firmness and ripening in watermelon remains unknown.In this study,we employed an integrative approach combining genome-wide association study(GWAS)and bulked segregant RNA-Seq analysis(BSR-Seq)to identify an overlapping candidate region between 12776310 and 12968331 bp on chromosome 6,underlying an auxin-responsive gene(Aux/IAA)associated with flesh firmness in watermelon.Transcriptome analysis,followed by real-time quantitative reverse transcription PCR(qRT-PCR),confirmed that the expression of Aux/IAA was consistently higher in fruits with high flesh firmness.The sequence alignment revealed a single base mutation in the coding region of Aux/IAA.Furthermore,the concomitant Kompetitive/Competitive allele-specific PCR(KASP)genotyping data sets for F2 population and germplasm accessions identified Aux/IAA as a strong candidate gene associated with flesh firmness.Aux/IAA was enriched in the plant hormone signal transduction pathway,involving cell enlargement and leading to low flesh firmness.We determined the higher accumulation of abscisic acid(ABA)in fruits with low flesh firmness than hard flesh.Moreover,overexpression of Aux/IAA induced higher flesh firmness with an increased number of fruit flesh cells while reducing ABA content and flesh cell sizes.Additionally,the allelic variation in Aux/IAA for soft flesh firmness was found to exist in Citrullus mucosospermus and gradually fixed into Citrullus lanatus during domestication,indicating that soft flesh firmness was a domesticated trait.These findings significantly enhanced our understanding of watermelon fruit flesh firmness and consequently the watermelon fruit quality.展开更多
The engineering of plants with enhanced tolerance to abiotic stresses typically involves complex multigene networks and may therefore have a greater potential to introduce unintended effects than the genetic modificat...The engineering of plants with enhanced tolerance to abiotic stresses typically involves complex multigene networks and may therefore have a greater potential to introduce unintended effects than the genetic modification for simple monogenic traits. For this reason, it is essential to study the unintended effects in transgenic plants engineered for stress tolerance. We selected drought-and salt-tolerant transgenic wheat overexpressing the transcription factor, GmDREB1, to investigate unintended pleiotropic effects using RNA-seq analysis. We compared the transcriptome alteration of transgenic plants with that of wild-type plants subjected to salt stress as a control. We found that GmDREB1 overexpression had a minimal impact on gene expression under normal conditions.GmDREB1 overexpression resulted in transcriptional reprogramming of the salt response,but many of the genes with differential expression are known to mitigate salt stress and contribute incrementally to the enhanced stress tolerance of transgenic wheat. GmDREB1 overexpression did not activate unintended gene networks with respect to gene expression in the roots of transgenic wheat. This work is important for establishing a method of detecting unintended effects of genetic engineering and the safety of such traits with the development of marketable transgenic crops in the near future.展开更多
Triple negative breast cancer(TNBC) is an aggressive subtype of breast cancer that currently lacks effective biomarkers and therapeutic targets required to investigate the diagnosis and treatment of TNBC. Here we perf...Triple negative breast cancer(TNBC) is an aggressive subtype of breast cancer that currently lacks effective biomarkers and therapeutic targets required to investigate the diagnosis and treatment of TNBC. Here we performed a comprehensive differential analysis of 165 TNBC samples by integrating RNA-seq data of breast tumor tissues and adjacent normal tissues from both our cohort and The Cancer Genome Atlas(TCGA). Pathway enrichment analysis was conducted to evaluate the biological function of TNBC-specific expressed genes. Further multivariate Cox proportional hazard regression was performed to evaluate the effect of these genes on TNBC prognosis. In this report, we identified a total of 148 TNBC-specific expressed genes that were primarily enriched in mammary gland morphogenesis and hormone levels related pathways, suggesting that mammary gland morphogenesis might play a unique role in TNBC patients differing from other breast cancer types. Further survival analysis revealed that nine genes(FSIP1, ADCY5, FSD1, HMSD, CMTM5, AFF3, CYP2 A7, ATP1 A2,and C11 orf86) were significantly associated with the prognosis of TNBC patients, while three of them(ADCY5,CYP2 A7, and ATP1 A2) were involved in the hormone-related pathways. These findings indicated the vital role of the hormone-related genes in TNBC tumorigenesis and may provide some independent prognostic markers as well as novel therapeutic targets for TNBC.展开更多
Paris polyphylla Smith var.yunnanensis(Franch.) Hand.-Mazz.is a rhizomatous,herbaceous,perennial plant that has been used for more than a thousand years in traditional Chinese medicine.It is facing extinction due to o...Paris polyphylla Smith var.yunnanensis(Franch.) Hand.-Mazz.is a rhizomatous,herbaceous,perennial plant that has been used for more than a thousand years in traditional Chinese medicine.It is facing extinction due to overharvesting.Steroids are the major therapeutic components in Paris roots,the commercial value of which increases with age.To date,no genomic data on the species have been available.In this study,transcriptome analysis of an 8-year-old root and a 4-year-old root provided insight into the metabolic pathways that generate the steroids.Using Illumina sequencing technology,we generated a high-quality sequence and demonstrated de novo assembly and annotation of genes in the absence of prior genome information.Approximately 87,577 unique sequences,with an average length of 614 bases,were obtained from the root cells.Using bioinformatics methods,we annotated approximately 65.51% of the unique sequences by conducting a similarity search with known genes in the National Center for Biotechnology Information's non-redundant database.The unique transcripts were functionally classified using the Gene Ontology hierarchy and the Kyoto Encyclopedia of Genes and Genomes database.Of 3082 genes that were identified as significantly differentially expressed between roots of different ages,1518(49.25%) were upregulated and 1564(50.75%) were downregulated in the older root.Metabolic pathway analysis predicted that 25 unigenes were responsible for the biosynthesis of the saponins steroids.These data represent a valuable resource for future genomic studies on this endangered species and will be valuable for efforts to genetically engineer P.polyphylla and facilitate saponin-rich plant development.展开更多
Lentil(Lens culinaris Medikus subsp.culinaris,2 n=14)is a cool-season legume with high production potential for multiple uses.However,limited molecular research has been conducted in this species owing to its large ge...Lentil(Lens culinaris Medikus subsp.culinaris,2 n=14)is a cool-season legume with high production potential for multiple uses.However,limited molecular research has been conducted in this species owing to its large genome,which impedes the generation of genome sequences and the development of molecular markers.In this study,more than 1.37 billion filtered clean reads were collected by RNA-Seq of six diverse lentil accessions and217,836 transcripts and 161,095 unigenes were de novo assembled,yielding respectively 257.1 and 240.6 million nucleotides.The mean transcript length was 1180 bp and the N50 and N90 lengths were respectively 2075 and 479 bp.The mean length of the unigenes was 1494 bp and their N50 and N90 values were respectively 2203 and 714 bp.The unigenes were annotated against seven databases.The FLOWERING LOCUS T(FT)gene homolog in lentil showed high protein sequence similarity to the FT gene homologs of pea and alfalfa.On the basis of the RNA-Seq analysis,26,449 EST-SSR markers were designed in silico,and 276 preliminarily screened markers were selected to evaluate polymorphism in 94 diverse lentil accessions.In total,125(45.29%)of 276 EST-SSR markers were found to be polymorphic.A total of 130,073 SNP loci were detected and 78(61.41%)of 127 SNPs were successfully converted to KASP markers.Population genetic analyses of the lentil accessions with EST-SSR and KASP markers revealed similar genetic structures,suggesting that the RNA-Seq-generated resources and the developed markers are reliable for use in molecular marker-assisted breeding of lentil.展开更多
The economically valuable oil crop Brassica napus(AACC,2 n=38),which arose from interspecific hybridization between the diploid ancestors Brassica rapa(AA,2 n=20) and Brassica oleracea(CC,2 n=18),has a complex genome....The economically valuable oil crop Brassica napus(AACC,2 n=38),which arose from interspecific hybridization between the diploid ancestors Brassica rapa(AA,2 n=20) and Brassica oleracea(CC,2 n=18),has a complex genome.More than 10% of the assembled sequences,most of which belong to the C subgenome,have not been anchored to the corresponding chromosome.Previously,a complete set of monosomic alien addition lines(MAALs,C1–C9) with each of the nine C-subgenome chromosomes added to the extracted A subgenome was obtained from the allotetraploid B.napus donor Oro,after the ancestral B.rapa(RBR Oro) genome was restored.These MAALs effectively reduced the complexity of the B.napus genome.Here,we determined the expression values of genes on unanchored scaffolds in the MAALs and RBR Oro.Then,multiple comparisons of these gene expression values were used to determine the affiliations of the nonanchored scaffolds on which the genes were located.In total,54.68%(44.11 Mb) of the 80.67 Mb of non-anchored scaffolds belonging to the C subgenome were assigned to corresponding C chromosomes.This work highlights the potential value of these MAALs in improving the genome quality of B.napus.展开更多
Barley stripe mosaic virus(BSMV) is the type member of the genus Hordeivirus. Brachypodium distachyon line Bd3-1 shows resistance to the BSMV ND18 strain, but is susceptible to an ND18 double mutant(βNDTGB1R390K, T39...Barley stripe mosaic virus(BSMV) is the type member of the genus Hordeivirus. Brachypodium distachyon line Bd3-1 shows resistance to the BSMV ND18 strain, but is susceptible to an ND18 double mutant(βNDTGB1R390K, T392K) in which lysine is substituted for an arginine at position 390 and for threonine at position 392 of the triple gene block 1(TGB1) protein. In order to understand differences in gene expression following infection with ND18 and double mutant ND18, Bd3-1 seedlings were subjected to RNA-seq analyses at 1, 6, and14 days post inoculation(dpi). The results revealed that basal immunity genes involved in cellulose synthesis and pathogenesis-related protein biosynthesis were enhanced in incompatible interactions between Bd3-1 and ND18. Most of the differentially expressed transcripts are related to trehalose biosynthesis, ethylene, jasmonic acid metabolism,protein phosphorylation, protein ubiquitination, transcriptional regulation, and transport process, as well as pathogenesis-related protein biosynthesis. In compatible interactions between Bd3-1 and ND18 mutant, Bd3-1 developed weak basal resistance responses to the virus. Many genes involved in cellulose biosynthesis, protein amino acid phosphorylation,protein biosynthesis, protein glycosylation, glycolysis and cellular macromolecular complex assembly that may be related to virus replication, assembly and movement were up-regulated. Some genes involved in oxidative stress responses were also up-regulated at14 dpi. BSMV ND18 mutant infection suppressed expression of genes functioning in regulation of transcription, protein kinase, cellular nitrogen compound biosynthetic process and photosynthesis. Differential expression patterns between compatible and incompatible interactions in Bd3-1 to the two BSMV strains provide important clues for understanding mechanism of resistance to BMSV in the model plant Brachypodium.展开更多
To explore genetic resource of wild soybean(Glycine soia. L), RNA-seq was used to investigate cyst nematode resistance of G. soja. Root transcriptome expressions were profiled at 9, 15 and 20 d post inoculation(DPI) i...To explore genetic resource of wild soybean(Glycine soia. L), RNA-seq was used to investigate cyst nematode resistance of G. soja. Root transcriptome expressions were profiled at 9, 15 and 20 d post inoculation(DPI) in resistant and susceptible G. soja to SCN(soybean cyst nematode). A total of 1,594 differentially expressed genes(DEGs) were identified in roots infected by SCN compared with non-infected roots. In the resistant accession, 619, 65, and 8 DEGs were detected at 9, 15, and 20 DPI, respectively, while 327, 460 and 115 DEGs were detected at the same sampling point of susceptible accessions. DEGs were enriched in peroxidase gene sets which were involved in response to oxidative stress and oxidation reduction. Two gene families, ZIM transcription factor and WRKY transcription factor were enriched. WRKY transcription factor was only enriched in resistant accession. Moreover, gene expressions of 9 DEGs were validated by qRT-PCR. XLOC_023202, an unknown protein was up regulated more than 5 fold at 9 and 15 DPI in the resistant accession. These results provided an atlas of gene expressions of G. soja in response to SCN infection, and identified candidate DEGs for future research.展开更多
Epicatechin gallate(ECG)is one of the polyphenolic compounds and has attracted much attention due to its various bioactivities.In this study,the neuroprotective eff ect of ECG against H_(2)O_(2)-induced oxidative inju...Epicatechin gallate(ECG)is one of the polyphenolic compounds and has attracted much attention due to its various bioactivities.In this study,the neuroprotective eff ect of ECG against H_(2)O_(2)-induced oxidative injury in PC12 cells as well as the possible mechanisms were investigated.Cell viability was determined by MTT assay.The differentially expressed genes(DEGs),GO enrichment,and KEGG enrichment were analyzed to explore the mechanism of ECG against H_(2)O_(2)-induced oxidative injury by using the RNA-seq method.Finally,the change in the cell cycle was analyzed by fl ow cytometry.H_(2)O_(2)(400-1200μmol/L)inhibited the cell viability in a concentration-dependent manner.ECG(6-150μmol/L)eff ectively attenuated the H_(2)O_(2)-induced decrease in cell viability.RNA-seq analysis showed that ECG regulated 1058 coexpressed DEGs.GO enrichment analysis showed that the cellular component was the dominant group after ECG treatment.KEGG analysis showed that the cell cycle,fanconi anemia pathway,and homologous recombination were the important pathways for ECG in improving H_(2)O_(2)-induced oxidative injury and 28 coexpressed DEGs in the cell cycle pathway were summarized.Finally,cell cycle analysis also proved that ECG improved H_(2)O_(2)-induced cell cycle arrest in the G2/M phase.Our present study demonstrated that ECG attenuated H_(2)O_(2)-induced neurologic oxidative damage by multiple modulatory mechanisms at the molecular transcription level.These fi ndings provide new insights for further study of the molecular mechanism of the neuroprotection of ECG.展开更多
A cell line,termed ZFIN,was established from the caudal fin of zebrafish and was shown to be susceptible to spring viremia of carp virus(SVCV).The ZFIN cells are epithelial like cells and have a moderate plasmid trans...A cell line,termed ZFIN,was established from the caudal fin of zebrafish and was shown to be susceptible to spring viremia of carp virus(SVCV).The ZFIN cells are epithelial like cells and have a moderate plasmid transfection efficiency of 13.9%.Using an RNA-seq approach,differentially expressed genes(DEGs)regulated by SVCV were identified.Infection of SVCV gave rise to 3931 DEGs and up-regulated DEGs were mostly enriched into the biological regulation and cellular processes,among which pathways for the type I interferon signaling and the response to exogenous dsRNA were the top two GO terms.Several KEGG signaling pathways including TLR signaling pathway,RLR receptor signaling pathway,cytosolic DNA-sensing pathway,NLR signaling pathway,cytokine-cytokine receptor interaction and ferroptosis were significantly enriched.Antiviral genes including ifnφ1,isg15 and mx were significantly up-regulated.In addition,key DEGs involved in autophagy were identified.The results indicate that the ZFIN cell line provides a useful in vitro tool for study on the gene functions and cellular responses to viral infection in fish.展开更多
The association of neurogenesis and gliogenesis with glioma remains unclear.By conducting single-cell RNA-seq analyses on 26 gliomas,we reported their classification into primitive oligodendrocyte precursor cell(pri-O...The association of neurogenesis and gliogenesis with glioma remains unclear.By conducting single-cell RNA-seq analyses on 26 gliomas,we reported their classification into primitive oligodendrocyte precursor cell(pri-OPC)-like and radial glia(RG)-like tumors and validated it in a public cohort and TCGA glioma.The RG-like tumors exhibited wild-type isocitrate dehydrogenase and tended to carry EGFR mutations,and the pri-OPC-like ones were prone to carrying TP53 mutations.Tumor subclones only in pri-OPC-like tumors showed substantially down-regulated MHC-I genes,suggesting their distinct immune evasion programs.Furthermore,the two subgroups appeared to extensively modulate glioma-infiltrating lymphocytes in distinct manners.Some specific genes not expressed in normal immune cells were found in glioma-infiltrating lymphocytes.For example,glial/glioma stem cell markers OLIG1/PTPRZ1 and B cell-specific receptors IGLC2/IGKC were expressed in pri-OPC-like and RG-like glioma-infiltrating lymphocytes,respectively.Their expression was positively correlated with those of immune checkpoint genes(e.g.,LGALS33)and poor survivals as validated by the increased expression of LGALS3 upon IGKC overexpression in Jurkat cells.This finding indicated a potential inhibitory role in tumor-infiltrating lymphocytes and could provide a new way of cancer immune evasion.展开更多
The retinal pigment epithelium(RPE)is fundamental to sustaining retinal homeostasis.RPE abnormality leads to visual defects and blindness,including age-related macular degeneration(AMD).Although breakthroughs have bee...The retinal pigment epithelium(RPE)is fundamental to sustaining retinal homeostasis.RPE abnormality leads to visual defects and blindness,including age-related macular degeneration(AMD).Although breakthroughs have been made in the treatment of neovascular AMD,effective intervention for atrophic AMD is largely absent.The adequate knowledge of RPE pathology is hindered by a lack of the patients'RPE datasets,especially at the single-cell resolution.In the current study,we delved into a large-scale single-cell resource of AMD donors,in which RPE cells were occupied in a substantial proportion.Bulk RNA-seq datasets of atrophic AMD were integrated to extract molecular characteristics of RPE in the pathogenesis of atrophic AMD.Both in vivo and in vitro models revealed that carboxypeptidase X,M14 family member 2(CPXM2),was specifically expressed in the RPE cells of atrophic AMD,which might be induced by oxidative stress and involved in the epithelial-mesenchymal transition of RPE cells.Additionally,silencing of CPXM2 inhibited the mesenchymal phenotype of RPE cells in an oxidative stress cell model.Thus,our results demonstrated that CPXM2 played a crucial role in regulating atrophic AMD and might serve as a potential therapeutic target for atrophic AMD.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl...Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.展开更多
Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques(Macaca mulatta, MMU)and crab-eating macaques(M. fascicularis, MFA) serve as...Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques(Macaca mulatta, MMU)and crab-eating macaques(M. fascicularis, MFA) serve as crucial nonhuman primate biomedical models with different phenotypes. To date, however, large-scale comparative transcriptome research between these two species has not yet been fully explored. Here, we conducted systematic comparisons utilizing newly sequenced RNA-seq data from84 samples(41 MFA samples and 43 MMU samples)encompassing 14 common tissues. Our findings revealed a small fraction of genes(3.7%) with differential expression between the two species, as well as 36.5% of genes with tissue-specific expression in both macaques. Comparison of gene expression between macaques and humans indicated that 22.6% of orthologous genes displayed differential expression in at least two tissues. Moreover,19.41% of genes that overlapped with macaque-specific structural variants showed differential expression between humans and macaques. Of these, the FAM220A gene exhibited elevated expression in humans compared to macaques due to lineage-specific duplication. In summary,this study presents a large-scale transcriptomic comparison between MMU and MFA and between macaques and humans. The discovery of gene expression variations not only enhances the biomedical utility of macaque models but also contributes to the wider field of primate genomics.展开更多
DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation ...DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.展开更多
Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity ag...Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
基金The study was supported by the Natural Science Foundation of Jilin Province(Grant No.20200201444JC).
文摘Background:Glioma is a kind of tumor that easily deteriorates and originates from glial cells in nerve tissue.Honokiol is a bisphenol compound that is an essential monomeric compound extracted from the roots and bark of Magnoliaceae plants.It also has anti-infection,antitumor,and immunomodulatory effects.In this study,we found that honokiol induces cell apoptosis in the human glioma cell lines U87-MG and U251-MG.However,the mechanism through which honokiol regulates glioma cell apoptosis is still unknown.Methods:We performed RNA-seq analysis of U251-MG cells treated with honokiol and control cells.Protein-protein interaction(PPI)network analysis was performed,and the 10 top hub unigenes were examined via real-time quantitative PCR.Furthermore,MAPK signaling and ferroptosis were detected via western blotting.Results:332 differentially expressed genes(DEGs)were found,comprising 163 increased and 169 decreased genes.Analysis of the DEGs revealed that various biological processes were enriched,including‘response to hypoxia’,‘cerebellum development cellular response to hypoxia,’‘iron ion binding,’‘oxygen transporter activity,’‘oxygen binding,’‘ferric iron binding,’and‘structural constituent of cytoskeleton.’Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis revealed that the DEGs were enriched in the following pathways:‘mitogen-activated protein kinases(MAPK)’,‘Hypoxia-inducible factor 1(HIF-1)’,‘ferroptosis,’‘Peroxisome proliferator-activated receptor(PPAR),’‘Phosphatidylinositol-4,5-bisphosphate 3-kinase(PI3K)-protein kinase B(Akt),’and‘phagosome.’Among these pathways,the MAPK signaling pathway and ferroptosis were verified.Conclusion:This study revealed the potential mechanism by which honokiol induces apoptosis and provided a comprehensive analysis of DEGs in honokiol-treated U251-MG cells and the associated signaling pathways.These data could lead to new ideas for future research and therapy for patients with glioma.
基金supported by the Agricultural Research Development Agency of Thailand (Grant No.PRP6405030280)Research Promotion fund for International and Educational Excellence, Thailand (Grant No.08/2562)。
文摘Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) with low(LS) and high seed-setting rates(HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4-5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes(DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS-specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as OsPME35 and OsPLL9, showed similar expression patterns, with higher levels in HS pistils pre-pollination. Os02g0467600, similar to cinnamate 4-hydroxylase gene(CYP73), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that OsPME35, OsPLL9, and Os02g0467600 contribute to prezygotic isolation by potentially modifying the stigma cell wall(OsPME35 and OsPLL9) and controlling later processes such as pollen-stigma adhesion(Os02g0467600) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.
基金the Agricultural Science and Technology Innovation Program(Grant No.CAAS-ASTIP-2021-ZFRI)China Agriculture Research System of MOF and MARA(Grant No.CARS-25-03)+3 种基金National Nature Science Foundation of China(Grant Nos.31672178 and 31471893)the Natural Science Foundation of Henan Province(Grant No.212300410312)the scientific and technological research in Henan Province(Grant No.202102110398)the key project of the Action of“Rejuvenating Mongolia with Science and Technology”(Grant No.NMKJXM202114).
文摘Watermelon is a highly cultivated fruit crop renowned for its quality properties of fruit flesh.Among various quality factors,fruit flesh firmness is a crucial quality parameter influencing the fruit texture,shelf life and its commercial value.The auxin/indole-3-acetic acid(Aux/IAA)plays a significant role in fruit development and ripening of non-climacteric fruits.However,the regulatory mechanism of Aux/IAA in controlling fruit flesh firmness and ripening in watermelon remains unknown.In this study,we employed an integrative approach combining genome-wide association study(GWAS)and bulked segregant RNA-Seq analysis(BSR-Seq)to identify an overlapping candidate region between 12776310 and 12968331 bp on chromosome 6,underlying an auxin-responsive gene(Aux/IAA)associated with flesh firmness in watermelon.Transcriptome analysis,followed by real-time quantitative reverse transcription PCR(qRT-PCR),confirmed that the expression of Aux/IAA was consistently higher in fruits with high flesh firmness.The sequence alignment revealed a single base mutation in the coding region of Aux/IAA.Furthermore,the concomitant Kompetitive/Competitive allele-specific PCR(KASP)genotyping data sets for F2 population and germplasm accessions identified Aux/IAA as a strong candidate gene associated with flesh firmness.Aux/IAA was enriched in the plant hormone signal transduction pathway,involving cell enlargement and leading to low flesh firmness.We determined the higher accumulation of abscisic acid(ABA)in fruits with low flesh firmness than hard flesh.Moreover,overexpression of Aux/IAA induced higher flesh firmness with an increased number of fruit flesh cells while reducing ABA content and flesh cell sizes.Additionally,the allelic variation in Aux/IAA for soft flesh firmness was found to exist in Citrullus mucosospermus and gradually fixed into Citrullus lanatus during domestication,indicating that soft flesh firmness was a domesticated trait.These findings significantly enhanced our understanding of watermelon fruit flesh firmness and consequently the watermelon fruit quality.
基金supported by the National Transgenic Key Project of the Ministry of Agriculture of China(2016ZX08011-003)the Agricultural Science and Technology Program for Innovation Team on Identification and excavation of Elite Crop Germplasm,CAAS
文摘The engineering of plants with enhanced tolerance to abiotic stresses typically involves complex multigene networks and may therefore have a greater potential to introduce unintended effects than the genetic modification for simple monogenic traits. For this reason, it is essential to study the unintended effects in transgenic plants engineered for stress tolerance. We selected drought-and salt-tolerant transgenic wheat overexpressing the transcription factor, GmDREB1, to investigate unintended pleiotropic effects using RNA-seq analysis. We compared the transcriptome alteration of transgenic plants with that of wild-type plants subjected to salt stress as a control. We found that GmDREB1 overexpression had a minimal impact on gene expression under normal conditions.GmDREB1 overexpression resulted in transcriptional reprogramming of the salt response,but many of the genes with differential expression are known to mitigate salt stress and contribute incrementally to the enhanced stress tolerance of transgenic wheat. GmDREB1 overexpression did not activate unintended gene networks with respect to gene expression in the roots of transgenic wheat. This work is important for establishing a method of detecting unintended effects of genetic engineering and the safety of such traits with the development of marketable transgenic crops in the near future.
基金supported by the Nanjing Medical Science and Technique Development Foundation(ZKX17041)the Natural Science Foundation of Jiangsu Province(BK20161120)+2 种基金the Maternal and child health research project of Jiangsu Province(F201628)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Public Health and Preventive Medicine)Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(PPZY2015A067)。
文摘Triple negative breast cancer(TNBC) is an aggressive subtype of breast cancer that currently lacks effective biomarkers and therapeutic targets required to investigate the diagnosis and treatment of TNBC. Here we performed a comprehensive differential analysis of 165 TNBC samples by integrating RNA-seq data of breast tumor tissues and adjacent normal tissues from both our cohort and The Cancer Genome Atlas(TCGA). Pathway enrichment analysis was conducted to evaluate the biological function of TNBC-specific expressed genes. Further multivariate Cox proportional hazard regression was performed to evaluate the effect of these genes on TNBC prognosis. In this report, we identified a total of 148 TNBC-specific expressed genes that were primarily enriched in mammary gland morphogenesis and hormone levels related pathways, suggesting that mammary gland morphogenesis might play a unique role in TNBC patients differing from other breast cancer types. Further survival analysis revealed that nine genes(FSIP1, ADCY5, FSD1, HMSD, CMTM5, AFF3, CYP2 A7, ATP1 A2,and C11 orf86) were significantly associated with the prognosis of TNBC patients, while three of them(ADCY5,CYP2 A7, and ATP1 A2) were involved in the hormone-related pathways. These findings indicated the vital role of the hormone-related genes in TNBC tumorigenesis and may provide some independent prognostic markers as well as novel therapeutic targets for TNBC.
基金supported by the National Natural Science Foundation of China(81473310,31260075,31560085)
文摘Paris polyphylla Smith var.yunnanensis(Franch.) Hand.-Mazz.is a rhizomatous,herbaceous,perennial plant that has been used for more than a thousand years in traditional Chinese medicine.It is facing extinction due to overharvesting.Steroids are the major therapeutic components in Paris roots,the commercial value of which increases with age.To date,no genomic data on the species have been available.In this study,transcriptome analysis of an 8-year-old root and a 4-year-old root provided insight into the metabolic pathways that generate the steroids.Using Illumina sequencing technology,we generated a high-quality sequence and demonstrated de novo assembly and annotation of genes in the absence of prior genome information.Approximately 87,577 unique sequences,with an average length of 614 bases,were obtained from the root cells.Using bioinformatics methods,we annotated approximately 65.51% of the unique sequences by conducting a similarity search with known genes in the National Center for Biotechnology Information's non-redundant database.The unique transcripts were functionally classified using the Gene Ontology hierarchy and the Kyoto Encyclopedia of Genes and Genomes database.Of 3082 genes that were identified as significantly differentially expressed between roots of different ages,1518(49.25%) were upregulated and 1564(50.75%) were downregulated in the older root.Metabolic pathway analysis predicted that 25 unigenes were responsible for the biosynthesis of the saponins steroids.These data represent a valuable resource for future genomic studies on this endangered species and will be valuable for efforts to genetically engineer P.polyphylla and facilitate saponin-rich plant development.
基金supported by the funding of Subject Team of Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018E15)National Key Research and Development Program of China(2017YFE0105100)+5 种基金Industry Team of Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016A02)Crop Germplasm Resources Protection(2130135)Coarse Cereals Innovation Team of Modern Agricultural Industry Technology System of Shandong Province(SDAIT-15-01)China Agriculture Research System(CARS-08)Youth Research Fund of Shandong Academy of Agricultural Sciences(2016YQN19)Agricultural Science and Technology Innovation Program(ASTIP)of CAAS。
文摘Lentil(Lens culinaris Medikus subsp.culinaris,2 n=14)is a cool-season legume with high production potential for multiple uses.However,limited molecular research has been conducted in this species owing to its large genome,which impedes the generation of genome sequences and the development of molecular markers.In this study,more than 1.37 billion filtered clean reads were collected by RNA-Seq of six diverse lentil accessions and217,836 transcripts and 161,095 unigenes were de novo assembled,yielding respectively 257.1 and 240.6 million nucleotides.The mean transcript length was 1180 bp and the N50 and N90 lengths were respectively 2075 and 479 bp.The mean length of the unigenes was 1494 bp and their N50 and N90 values were respectively 2203 and 714 bp.The unigenes were annotated against seven databases.The FLOWERING LOCUS T(FT)gene homolog in lentil showed high protein sequence similarity to the FT gene homologs of pea and alfalfa.On the basis of the RNA-Seq analysis,26,449 EST-SSR markers were designed in silico,and 276 preliminarily screened markers were selected to evaluate polymorphism in 94 diverse lentil accessions.In total,125(45.29%)of 276 EST-SSR markers were found to be polymorphic.A total of 130,073 SNP loci were detected and 78(61.41%)of 127 SNPs were successfully converted to KASP markers.Population genetic analyses of the lentil accessions with EST-SSR and KASP markers revealed similar genetic structures,suggesting that the RNA-Seq-generated resources and the developed markers are reliable for use in molecular marker-assisted breeding of lentil.
基金supported by the National Natural Science Foundation of China(31801391)the Doctoral Foundation of Guizhou Normal University,China(11904-0517061 and 11904-0517054)+1 种基金the Project for Young Growth of Education Department of Guizhou Province,China(GPED,qianjiaoheKYzi[2017]127)the Collaborative Fund of Guizhou Science and Technology,China(QKHLHZ[2017]7356 and [2012]21)
文摘The economically valuable oil crop Brassica napus(AACC,2 n=38),which arose from interspecific hybridization between the diploid ancestors Brassica rapa(AA,2 n=20) and Brassica oleracea(CC,2 n=18),has a complex genome.More than 10% of the assembled sequences,most of which belong to the C subgenome,have not been anchored to the corresponding chromosome.Previously,a complete set of monosomic alien addition lines(MAALs,C1–C9) with each of the nine C-subgenome chromosomes added to the extracted A subgenome was obtained from the allotetraploid B.napus donor Oro,after the ancestral B.rapa(RBR Oro) genome was restored.These MAALs effectively reduced the complexity of the B.napus genome.Here,we determined the expression values of genes on unanchored scaffolds in the MAALs and RBR Oro.Then,multiple comparisons of these gene expression values were used to determine the affiliations of the nonanchored scaffolds on which the genes were located.In total,54.68%(44.11 Mb) of the 80.67 Mb of non-anchored scaffolds belonging to the C subgenome were assigned to corresponding C chromosomes.This work highlights the potential value of these MAALs in improving the genome quality of B.napus.
基金supported by the National Natural Science Foundation of China(No.31210103902)
文摘Barley stripe mosaic virus(BSMV) is the type member of the genus Hordeivirus. Brachypodium distachyon line Bd3-1 shows resistance to the BSMV ND18 strain, but is susceptible to an ND18 double mutant(βNDTGB1R390K, T392K) in which lysine is substituted for an arginine at position 390 and for threonine at position 392 of the triple gene block 1(TGB1) protein. In order to understand differences in gene expression following infection with ND18 and double mutant ND18, Bd3-1 seedlings were subjected to RNA-seq analyses at 1, 6, and14 days post inoculation(dpi). The results revealed that basal immunity genes involved in cellulose synthesis and pathogenesis-related protein biosynthesis were enhanced in incompatible interactions between Bd3-1 and ND18. Most of the differentially expressed transcripts are related to trehalose biosynthesis, ethylene, jasmonic acid metabolism,protein phosphorylation, protein ubiquitination, transcriptional regulation, and transport process, as well as pathogenesis-related protein biosynthesis. In compatible interactions between Bd3-1 and ND18 mutant, Bd3-1 developed weak basal resistance responses to the virus. Many genes involved in cellulose biosynthesis, protein amino acid phosphorylation,protein biosynthesis, protein glycosylation, glycolysis and cellular macromolecular complex assembly that may be related to virus replication, assembly and movement were up-regulated. Some genes involved in oxidative stress responses were also up-regulated at14 dpi. BSMV ND18 mutant infection suppressed expression of genes functioning in regulation of transcription, protein kinase, cellular nitrogen compound biosynthetic process and photosynthesis. Differential expression patterns between compatible and incompatible interactions in Bd3-1 to the two BSMV strains provide important clues for understanding mechanism of resistance to BMSV in the model plant Brachypodium.
基金supported by Science and Technology Development Program of Jilin Province (20170414009GH)Agricultural Science and Technology Innovation Project of Jilin Province (CXGC2017JQ018, CXGC2017ZY024)the United States Department of Agriculture-Agricultural Research Service
文摘To explore genetic resource of wild soybean(Glycine soia. L), RNA-seq was used to investigate cyst nematode resistance of G. soja. Root transcriptome expressions were profiled at 9, 15 and 20 d post inoculation(DPI) in resistant and susceptible G. soja to SCN(soybean cyst nematode). A total of 1,594 differentially expressed genes(DEGs) were identified in roots infected by SCN compared with non-infected roots. In the resistant accession, 619, 65, and 8 DEGs were detected at 9, 15, and 20 DPI, respectively, while 327, 460 and 115 DEGs were detected at the same sampling point of susceptible accessions. DEGs were enriched in peroxidase gene sets which were involved in response to oxidative stress and oxidation reduction. Two gene families, ZIM transcription factor and WRKY transcription factor were enriched. WRKY transcription factor was only enriched in resistant accession. Moreover, gene expressions of 9 DEGs were validated by qRT-PCR. XLOC_023202, an unknown protein was up regulated more than 5 fold at 9 and 15 DPI in the resistant accession. These results provided an atlas of gene expressions of G. soja in response to SCN infection, and identified candidate DEGs for future research.
基金This work was supported by College Students Innovation and Entrepreneurship Training Program in 2021(No.202110163003).
文摘Epicatechin gallate(ECG)is one of the polyphenolic compounds and has attracted much attention due to its various bioactivities.In this study,the neuroprotective eff ect of ECG against H_(2)O_(2)-induced oxidative injury in PC12 cells as well as the possible mechanisms were investigated.Cell viability was determined by MTT assay.The differentially expressed genes(DEGs),GO enrichment,and KEGG enrichment were analyzed to explore the mechanism of ECG against H_(2)O_(2)-induced oxidative injury by using the RNA-seq method.Finally,the change in the cell cycle was analyzed by fl ow cytometry.H_(2)O_(2)(400-1200μmol/L)inhibited the cell viability in a concentration-dependent manner.ECG(6-150μmol/L)eff ectively attenuated the H_(2)O_(2)-induced decrease in cell viability.RNA-seq analysis showed that ECG regulated 1058 coexpressed DEGs.GO enrichment analysis showed that the cellular component was the dominant group after ECG treatment.KEGG analysis showed that the cell cycle,fanconi anemia pathway,and homologous recombination were the important pathways for ECG in improving H_(2)O_(2)-induced oxidative injury and 28 coexpressed DEGs in the cell cycle pathway were summarized.Finally,cell cycle analysis also proved that ECG improved H_(2)O_(2)-induced cell cycle arrest in the G2/M phase.Our present study demonstrated that ECG attenuated H_(2)O_(2)-induced neurologic oxidative damage by multiple modulatory mechanisms at the molecular transcription level.These fi ndings provide new insights for further study of the molecular mechanism of the neuroprotection of ECG.
基金funded by the National Natural Science Foundation of China(Grant No.32030112 and U21A20268).
文摘A cell line,termed ZFIN,was established from the caudal fin of zebrafish and was shown to be susceptible to spring viremia of carp virus(SVCV).The ZFIN cells are epithelial like cells and have a moderate plasmid transfection efficiency of 13.9%.Using an RNA-seq approach,differentially expressed genes(DEGs)regulated by SVCV were identified.Infection of SVCV gave rise to 3931 DEGs and up-regulated DEGs were mostly enriched into the biological regulation and cellular processes,among which pathways for the type I interferon signaling and the response to exogenous dsRNA were the top two GO terms.Several KEGG signaling pathways including TLR signaling pathway,RLR receptor signaling pathway,cytosolic DNA-sensing pathway,NLR signaling pathway,cytokine-cytokine receptor interaction and ferroptosis were significantly enriched.Antiviral genes including ifnφ1,isg15 and mx were significantly up-regulated.In addition,key DEGs involved in autophagy were identified.The results indicate that the ZFIN cell line provides a useful in vitro tool for study on the gene functions and cellular responses to viral infection in fish.
基金supported by talent startup funding from Fudan University(Nos.JIF101017,SXF101012,and JIF101047)Science Innovation 2030-Brain Science and Brain-Inspired Intelligence Technology Major Project(No.2021ZD0201100 Task 4 and No.2021ZD0201104)from the Ministry of Science and Technology(MOST),China+3 种基金Jinsong Wu was supported by Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX01)ZJ Lab,and operating grant of Shanghai Brain Bank technical system(No.16JC1420103)Edwin Wang was supported by Alberta Innovates Translational Chair Program in Cancer Genomics,the Natural Sciences and Engineering Research Council of Canada(NSERC,No.RGPIN-2017-04885)Canadian Foundation of Innovation(No.36655).
文摘The association of neurogenesis and gliogenesis with glioma remains unclear.By conducting single-cell RNA-seq analyses on 26 gliomas,we reported their classification into primitive oligodendrocyte precursor cell(pri-OPC)-like and radial glia(RG)-like tumors and validated it in a public cohort and TCGA glioma.The RG-like tumors exhibited wild-type isocitrate dehydrogenase and tended to carry EGFR mutations,and the pri-OPC-like ones were prone to carrying TP53 mutations.Tumor subclones only in pri-OPC-like tumors showed substantially down-regulated MHC-I genes,suggesting their distinct immune evasion programs.Furthermore,the two subgroups appeared to extensively modulate glioma-infiltrating lymphocytes in distinct manners.Some specific genes not expressed in normal immune cells were found in glioma-infiltrating lymphocytes.For example,glial/glioma stem cell markers OLIG1/PTPRZ1 and B cell-specific receptors IGLC2/IGKC were expressed in pri-OPC-like and RG-like glioma-infiltrating lymphocytes,respectively.Their expression was positively correlated with those of immune checkpoint genes(e.g.,LGALS33)and poor survivals as validated by the increased expression of LGALS3 upon IGKC overexpression in Jurkat cells.This finding indicated a potential inhibitory role in tumor-infiltrating lymphocytes and could provide a new way of cancer immune evasion.
基金the National Natural Science Foundation of China(Grant Nos.81970821 and 82271100 to Q.L.).
文摘The retinal pigment epithelium(RPE)is fundamental to sustaining retinal homeostasis.RPE abnormality leads to visual defects and blindness,including age-related macular degeneration(AMD).Although breakthroughs have been made in the treatment of neovascular AMD,effective intervention for atrophic AMD is largely absent.The adequate knowledge of RPE pathology is hindered by a lack of the patients'RPE datasets,especially at the single-cell resolution.In the current study,we delved into a large-scale single-cell resource of AMD donors,in which RPE cells were occupied in a substantial proportion.Bulk RNA-seq datasets of atrophic AMD were integrated to extract molecular characteristics of RPE in the pathogenesis of atrophic AMD.Both in vivo and in vitro models revealed that carboxypeptidase X,M14 family member 2(CPXM2),was specifically expressed in the RPE cells of atrophic AMD,which might be induced by oxidative stress and involved in the epithelial-mesenchymal transition of RPE cells.Additionally,silencing of CPXM2 inhibited the mesenchymal phenotype of RPE cells in an oxidative stress cell model.Thus,our results demonstrated that CPXM2 played a crucial role in regulating atrophic AMD and might serve as a potential therapeutic target for atrophic AMD.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
文摘Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.
基金supported by the National Natural Science Foundation of China (82021001 and 31825018 to Q.S., 32370658 to Y.M.,82001372 to X.Y.)National Key Research and Development Program of China (2022YFF0710901)+2 种基金National Science and Technology Innovation2030 Major Program (2021ZD0200900) to Q.S.Shanghai Pujiang Program (22PJ1407300)Shanghai Jiao Tong University 2030 Initiative (WH510363001-7) to Y.M。
文摘Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques(Macaca mulatta, MMU)and crab-eating macaques(M. fascicularis, MFA) serve as crucial nonhuman primate biomedical models with different phenotypes. To date, however, large-scale comparative transcriptome research between these two species has not yet been fully explored. Here, we conducted systematic comparisons utilizing newly sequenced RNA-seq data from84 samples(41 MFA samples and 43 MMU samples)encompassing 14 common tissues. Our findings revealed a small fraction of genes(3.7%) with differential expression between the two species, as well as 36.5% of genes with tissue-specific expression in both macaques. Comparison of gene expression between macaques and humans indicated that 22.6% of orthologous genes displayed differential expression in at least two tissues. Moreover,19.41% of genes that overlapped with macaque-specific structural variants showed differential expression between humans and macaques. Of these, the FAM220A gene exhibited elevated expression in humans compared to macaques due to lineage-specific duplication. In summary,this study presents a large-scale transcriptomic comparison between MMU and MFA and between macaques and humans. The discovery of gene expression variations not only enhances the biomedical utility of macaque models but also contributes to the wider field of primate genomics.
基金support from the National Key R&D Program of China(Grant No.2018YFE0118700)the National Natural Science Foundation of China(NSFC Grant No.62174119)+1 种基金the 111 Project(Grant No.B07014)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin University.
文摘DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.
基金supported by National Natural Science Foundation of China(31972021)R&D Projects in Key Areas of Guangdong Province(2019B020212003)+4 种基金the Science and Technology Program of Guangzhou,China(202206010177)Guangdong key research and development program(2021B0202060001)Foshan and agricultural academy cooperation projectGuangdong Modern Agriculture project(2022KJ117)Aquatic Products Center Project of GAAS。
文摘Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.