In the onset and progression of psoriasis,redox imbalance is a vital factor.It's widely accepted that too much reactive oxygen species(ROS)always make psoriasis worse.Recent research,however,has shown that the acc...In the onset and progression of psoriasis,redox imbalance is a vital factor.It's widely accepted that too much reactive oxygen species(ROS)always make psoriasis worse.Recent research,however,has shown that the accumulation of ROS is not entirely detrimental,as it helps reduce psoriasis lesions by inhibiting epidermal proliferation and keratinocyte death.As a result,ROS appears to have two opposing effects on the treatment of psoriasis.In this review,the current ROS-related therapies for psoriasis,including basic and clinical research,are presented.Additionally,the design and therapeutic benefits of various drug delivery systems and therapeutic approaches are examined,and a potential balance between antioxidative stress and ROS accumulation is also trying to be investigated.展开更多
A barley mutant,194,was observed to exhibit a leaf spot phenotype over the whole course of its growing period.In this study,the phenotype and antioxidant competence were studied in the lesion mimic mutant 194.Plant he...A barley mutant,194,was observed to exhibit a leaf spot phenotype over the whole course of its growing period.In this study,the phenotype and antioxidant competence were studied in the lesion mimic mutant 194.Plant height was slightly higher in mutant 194 than in the wild type(WT).In addition,leaf spot per plant in mutant 194 was significantly higher than in WT.Antioxidant competence,as indicated by reactive oxygen species(ROS)accumulation,antioxidant enzyme activity,and the expression of antioxidant enzyme-encoding genes was also assessed in mutant 194.Compared to the WT,mutant 194 displayed a relatively higher accumulation of ROS,accompanied by lower activities of some antioxidant enzymes and downregulation of antioxidant enzyme-encoding genes.This demonstrated reduced antioxidant competence in mutant 194.The results suggested that this lower antioxidant competence of mutant 194 could lead to the accumulation of excessive ROS.This excess of ROS could induce programmed cell death and has the potential to promote disease resistance in mutant 194.展开更多
The green peach aphid,Myzus persicae,is one of the most threatening pests in pepper cultivation and growers would benefit from resistant varietices.Previously,we identified two Capsicum acessions as susceptible and th...The green peach aphid,Myzus persicae,is one of the most threatening pests in pepper cultivation and growers would benefit from resistant varietices.Previously,we identified two Capsicum acessions as susceptible and three as resistant to M.persicae using an aphid population originating from the Netherlands(NL).Later on we identified an aphid population originating from a diferent gcographical region(Switserland,SW)that was virulent on all tested Capsicum acessions.The objeetive of the current work is to describe in detail diferent aspects of the interaction between two aphid populations and two sclected Capsicum acessions(one that was susceptible[PB2013046]and one that was resistant[PB2013071]to population NL),including biochemical processes involved.Electrical penetration graph(EPG)recordings showed similar feeding activities for both aphid populations on PB2013046.On acession PB2013071 the aphid population sw was able to devote significantly more time to phloem ingestion than population NL.We also studied plant defense response and found that plants of acession PB2013046 could not induce an accumulation of reactive oxygen species and callose formation after infestation with either aphid population.However,plants of PB2013071 induced a stronger defense response after infestation by population NL than after infestation by population SW.Based on these results,population SW of M.persicae seems to have overcome the resistance of PB2013071 that prevented feeding of aphids from NL population.The potential mechanism by which SW population overcomes the resistance is discussed.展开更多
基金These authors contributed equally to this work:Jingyi HuThese authors contributed equally to this work:Qiong Bian。
文摘In the onset and progression of psoriasis,redox imbalance is a vital factor.It's widely accepted that too much reactive oxygen species(ROS)always make psoriasis worse.Recent research,however,has shown that the accumulation of ROS is not entirely detrimental,as it helps reduce psoriasis lesions by inhibiting epidermal proliferation and keratinocyte death.As a result,ROS appears to have two opposing effects on the treatment of psoriasis.In this review,the current ROS-related therapies for psoriasis,including basic and clinical research,are presented.Additionally,the design and therapeutic benefits of various drug delivery systems and therapeutic approaches are examined,and a potential balance between antioxidative stress and ROS accumulation is also trying to be investigated.
文摘A barley mutant,194,was observed to exhibit a leaf spot phenotype over the whole course of its growing period.In this study,the phenotype and antioxidant competence were studied in the lesion mimic mutant 194.Plant height was slightly higher in mutant 194 than in the wild type(WT).In addition,leaf spot per plant in mutant 194 was significantly higher than in WT.Antioxidant competence,as indicated by reactive oxygen species(ROS)accumulation,antioxidant enzyme activity,and the expression of antioxidant enzyme-encoding genes was also assessed in mutant 194.Compared to the WT,mutant 194 displayed a relatively higher accumulation of ROS,accompanied by lower activities of some antioxidant enzymes and downregulation of antioxidant enzyme-encoding genes.This demonstrated reduced antioxidant competence in mutant 194.The results suggested that this lower antioxidant competence of mutant 194 could lead to the accumulation of excessive ROS.This excess of ROS could induce programmed cell death and has the potential to promote disease resistance in mutant 194.
基金by a grant(PPS 1409-029)from the Ministry of Agriculture,Nature and Food Quality under the Groene Veredeling(Green Breeding)programme of the Netherlands,as well as the breeding companies Syngenta B.V.,the Netherlands and Bayer Crop Science B.V.,the Netherlands.
文摘The green peach aphid,Myzus persicae,is one of the most threatening pests in pepper cultivation and growers would benefit from resistant varietices.Previously,we identified two Capsicum acessions as susceptible and three as resistant to M.persicae using an aphid population originating from the Netherlands(NL).Later on we identified an aphid population originating from a diferent gcographical region(Switserland,SW)that was virulent on all tested Capsicum acessions.The objeetive of the current work is to describe in detail diferent aspects of the interaction between two aphid populations and two sclected Capsicum acessions(one that was susceptible[PB2013046]and one that was resistant[PB2013071]to population NL),including biochemical processes involved.Electrical penetration graph(EPG)recordings showed similar feeding activities for both aphid populations on PB2013046.On acession PB2013071 the aphid population sw was able to devote significantly more time to phloem ingestion than population NL.We also studied plant defense response and found that plants of acession PB2013046 could not induce an accumulation of reactive oxygen species and callose formation after infestation with either aphid population.However,plants of PB2013071 induced a stronger defense response after infestation by population NL than after infestation by population SW.Based on these results,population SW of M.persicae seems to have overcome the resistance of PB2013071 that prevented feeding of aphids from NL population.The potential mechanism by which SW population overcomes the resistance is discussed.