Ion-pairing high-performance liquid chromatography-ultraviolet (HPLC-UV) methods were developed to determine two commonly used chelating agents, ethylenediaminetetraacetic acid (EDTA) in Abilify (a small molecule...Ion-pairing high-performance liquid chromatography-ultraviolet (HPLC-UV) methods were developed to determine two commonly used chelating agents, ethylenediaminetetraacetic acid (EDTA) in Abilify (a small molecule drug with aripiprazole as the active pharmaceutical ingredient) oral solution and die- thylenetriaminepentaacetic acid (DTPA) in Yervoy (a monoclonal antibody drug with ipilimumab as the active pharmaceutical ingredient) intravenous formulation. Since the analytes, EDTA and DTPA, do not contain chromophores, transition metal ions (Cu2+, Fe3+) which generate highly stable metallocom- plexes with the chelating agents were added into the sample preparation to enhance UV detection. The use of metallocomplexes with ion-pairing chromatography provides the ability to achieve the desired sensitivity and selectivity in the development of the method. Specifically, the sample preparation in- volving metallocomplex formation allowed sensitive UV detection. Copper was utilized for the de- termination of EDTA and iron was utilized for the determination of DTPA. In the case of EDTA, a gradient mobile phase separated the components of the formulation from the analyte. In the method for DTPA, the active drug substance, ipilimumab, was eluted in the void. In addition, the optimization of the concentration of the ion-pairing reagent was discussed as a means of enhancing the retention of the aminopolycarboxylic acids (APCAs) including EDTA and DTPA and the specificity of the method. The analytical method development was designed based on the chromatographic properties of the analytes, the nature of the sample matrix and the intended purpose of the method. Validation data were presented for the two methods. Finally, both methods were successfully utilized in determining the fate of the chelates.展开更多
A specific, precise and accurate ion-pair HPLC-UV method has been developed and validated for simultaneous determination of phosphocreatine (PCr), and its metabolite creatine (Cr) as well as related ATP in plasma and ...A specific, precise and accurate ion-pair HPLC-UV method has been developed and validated for simultaneous determination of phosphocreatine (PCr), and its metabolite creatine (Cr) as well as related ATP in plasma and red blood cell (RBC) of rabbits. After addition of TMP as IS, the samples were deproteinized with 6% PCA. The analytes were separated on a Kromasil C18 column using a tertiary gradient mobile phase composed of buffer A (0.2% KH2PO4 + 0.08% tetrabutyl ammonium hydrogen sulphate, pH 3.0), buffer B (buffer A adjusted to pH 7.5 with 1 mol/L NaOH) and MeOH. Detection wavelengths were set at 210 nm for PCr and Cr and 260 nm for ATP and TMP. Some blank samples were initially run for baseline subtraction. The linear detection responses were obtained for PCr concentration over a range of 10 - 7500 mg/ml (plasma) and 5 - 2500 mg/ml (RBC) and for both Cr and ATP concentrations of 10 - 1500 mg/ml (plasma) and 5 - 750 mg/ml (RBC) (r > 0.99). The QC samples of 3 analytes showed intra-day and inter-day precisions (RSD) of - 107%. The method was successfully used to simultaneously determine plasma and RBC concentrations of the 3 analytes and to study pharmacokinetics after iv administration of PCr to rabbits.展开更多
文摘Ion-pairing high-performance liquid chromatography-ultraviolet (HPLC-UV) methods were developed to determine two commonly used chelating agents, ethylenediaminetetraacetic acid (EDTA) in Abilify (a small molecule drug with aripiprazole as the active pharmaceutical ingredient) oral solution and die- thylenetriaminepentaacetic acid (DTPA) in Yervoy (a monoclonal antibody drug with ipilimumab as the active pharmaceutical ingredient) intravenous formulation. Since the analytes, EDTA and DTPA, do not contain chromophores, transition metal ions (Cu2+, Fe3+) which generate highly stable metallocom- plexes with the chelating agents were added into the sample preparation to enhance UV detection. The use of metallocomplexes with ion-pairing chromatography provides the ability to achieve the desired sensitivity and selectivity in the development of the method. Specifically, the sample preparation in- volving metallocomplex formation allowed sensitive UV detection. Copper was utilized for the de- termination of EDTA and iron was utilized for the determination of DTPA. In the case of EDTA, a gradient mobile phase separated the components of the formulation from the analyte. In the method for DTPA, the active drug substance, ipilimumab, was eluted in the void. In addition, the optimization of the concentration of the ion-pairing reagent was discussed as a means of enhancing the retention of the aminopolycarboxylic acids (APCAs) including EDTA and DTPA and the specificity of the method. The analytical method development was designed based on the chromatographic properties of the analytes, the nature of the sample matrix and the intended purpose of the method. Validation data were presented for the two methods. Finally, both methods were successfully utilized in determining the fate of the chelates.
文摘A specific, precise and accurate ion-pair HPLC-UV method has been developed and validated for simultaneous determination of phosphocreatine (PCr), and its metabolite creatine (Cr) as well as related ATP in plasma and red blood cell (RBC) of rabbits. After addition of TMP as IS, the samples were deproteinized with 6% PCA. The analytes were separated on a Kromasil C18 column using a tertiary gradient mobile phase composed of buffer A (0.2% KH2PO4 + 0.08% tetrabutyl ammonium hydrogen sulphate, pH 3.0), buffer B (buffer A adjusted to pH 7.5 with 1 mol/L NaOH) and MeOH. Detection wavelengths were set at 210 nm for PCr and Cr and 260 nm for ATP and TMP. Some blank samples were initially run for baseline subtraction. The linear detection responses were obtained for PCr concentration over a range of 10 - 7500 mg/ml (plasma) and 5 - 2500 mg/ml (RBC) and for both Cr and ATP concentrations of 10 - 1500 mg/ml (plasma) and 5 - 750 mg/ml (RBC) (r > 0.99). The QC samples of 3 analytes showed intra-day and inter-day precisions (RSD) of - 107%. The method was successfully used to simultaneously determine plasma and RBC concentrations of the 3 analytes and to study pharmacokinetics after iv administration of PCr to rabbits.