We have investigated the feasibilities and accuracies of the identifications of RR Lyrae stars and quasars from the simulated data of the Multi-channel Photometric Survey Telescope(Mephisto)W Survey.Based on the varia...We have investigated the feasibilities and accuracies of the identifications of RR Lyrae stars and quasars from the simulated data of the Multi-channel Photometric Survey Telescope(Mephisto)W Survey.Based on the variable sources light curve libraries from the Sloan Digital Sky Survey(SDSS)Stripe 82 data and the observation history simulation from the Mephisto-W Survey Scheduler,we have simulated the uvgriz multi-band light curves of RR Lyrae stars,quasars and other variable sources for the first year observation of Mephisto W Survey.We have applied the ensemble machine learning algorithm Random Forest Classifier(RFC)to identify RR Lyrae stars and quasars,respectively.We build training and test samples and extract~150 features from the simulated light curves and train two RFCs respectively for the RR Lyrae star and quasar classification.We find that,our RFCs are able to select the RR Lyrae stars and quasars with remarkably high precision and completeness,with purity=95.4%and completeness=96.9%for the RR Lyrae RFC and purity=91.4%and completeness=90.2%for the quasar RFC.We have also derived relative importances of the extracted features utilized to classify RR Lyrae stars and quasars.展开更多
The Van Hoof effect is a phase shift existing between the radial velocity curves of hydrogen and metallic lines within the atmosphere of pulsating stars.In this article,we present a study of this phenomenon through th...The Van Hoof effect is a phase shift existing between the radial velocity curves of hydrogen and metallic lines within the atmosphere of pulsating stars.In this article,we present a study of this phenomenon through the spectra of the brightest pulsating star RR Lyr of RR Lyrae stars recorded for 22 yr.We based ourselves,on the one hand,on 1268 spectra(41 nights of observation)recorded between the years 1994 and 1997 at the Observatory of Haute Provence(OHP,France)previously observed by Chadid and Gillet,and on the other hand on 1569 spectra(46nights of observation)recorded at our Oukaimeden Observatory(Morocco)between 2015 and 2016.Through this study,we have detected information on atmospheric dynamics that had not previously been detected.Indeed,the Van Hoof effect which results in a clear correlation between the radial velocities of hydrogen and those of the metallic lines has been observed and analyzed at different Blazhko phases.A correlation between the radial velocities of different metallic lines located in the lower atmosphere has been observed as well.For the first time,we were able to show that the amplitude of the radial velocity curves deduced from the lines of hydrogen and that of FeⅡ(λ4923.921?)increases toward the minimum of the Blazhko cycle and decreases toward the maximum of the same Blazhko cycle.Furthermore,we found that the Van Hoof effect is also modulated by the Blazhko effect.Thus,toward the minimum of the Blazhko cycle the Van Hoof effect is more visible and at the maximum of the Blazhko cycle,this effect is minimal.We also observed the temporal evolution of the amplitudes of the radial velocities of the lower and upper atmosphere.When observed over a long time,we can interpret it as a function of the Blazhko phases.展开更多
Intensive photometric and spectral observations of the variable star V2551 Cyg are presented.The light curve shape reveals that the target is a pulsating star, contrary to its previous classification as an eclipsing b...Intensive photometric and spectral observations of the variable star V2551 Cyg are presented.The light curve shape reveals that the target is a pulsating star, contrary to its previous classification as an eclipsing binary. The period and amplitude of the light curve, the amplitudes of color changes and the radial velocity curve of V2551 Cyg are similar to those of a high-amplitude δ Scuti variable. The target seems to pulsate with the fundamental mode. However, V2551 Cyg exhibits several important peculiarities:(i) the decreasing branch of its light curve is steeper than the increasing one;(ii) the radial velocity curve has a flat section in the phase range 0.7-1.2 and short increase of the negative radial velocity at phase 0.7;(iii) the rotational velocity is quite big for a HADS star;(iv) the Fourier coefficients of V2551 Cyg are quite different from those of HADS stars. The target classification is difficult due to these peculiarities.展开更多
基金funded by the National Natural Science Foundation of China(NSFC)Nos.11803029,11833006 and 12173034the National Training Program of Innovation and Entrepreneurship for Undergraduates of China No.201910673001,Yunnan University grant C176220100007+8 种基金the National Key R&D Program of China No.2019YFA0405500the science research grants from the China Manned Space Project with Nos.CMS-CSST-2021-A09,CMS-CSST-2021-A08 and CMS-CSST2021-B03Funding for SDSS-Ⅲhas been provided by the Alfred P.Sloan Foundation,the Participating Institutions,the National Science Foundation,and the U.S.Department of Energy Office of ScienceThe national facility capability for Sky Mapper has been funded through ARC LIEF grant LE130100104 from the Australian Research CouncilDevelopment and support of the Sky Mapper node of the ASVO has been funded in part by Astronomy Australia Limited(AAL)the Australian Government through the Commonwealth’s Education Investment Fund(EIF)National Collaborative Research Infrastructure Strategy(NCRIS)the National e Research Collaboration Tools and Resources(Ne CTAR)the Australian National Data Service Projects(ANDS)。
文摘We have investigated the feasibilities and accuracies of the identifications of RR Lyrae stars and quasars from the simulated data of the Multi-channel Photometric Survey Telescope(Mephisto)W Survey.Based on the variable sources light curve libraries from the Sloan Digital Sky Survey(SDSS)Stripe 82 data and the observation history simulation from the Mephisto-W Survey Scheduler,we have simulated the uvgriz multi-band light curves of RR Lyrae stars,quasars and other variable sources for the first year observation of Mephisto W Survey.We have applied the ensemble machine learning algorithm Random Forest Classifier(RFC)to identify RR Lyrae stars and quasars,respectively.We build training and test samples and extract~150 features from the simulated light curves and train two RFCs respectively for the RR Lyrae star and quasar classification.We find that,our RFCs are able to select the RR Lyrae stars and quasars with remarkably high precision and completeness,with purity=95.4%and completeness=96.9%for the RR Lyrae RFC and purity=91.4%and completeness=90.2%for the quasar RFC.We have also derived relative importances of the extracted features utilized to classify RR Lyrae stars and quasars.
文摘The Van Hoof effect is a phase shift existing between the radial velocity curves of hydrogen and metallic lines within the atmosphere of pulsating stars.In this article,we present a study of this phenomenon through the spectra of the brightest pulsating star RR Lyr of RR Lyrae stars recorded for 22 yr.We based ourselves,on the one hand,on 1268 spectra(41 nights of observation)recorded between the years 1994 and 1997 at the Observatory of Haute Provence(OHP,France)previously observed by Chadid and Gillet,and on the other hand on 1569 spectra(46nights of observation)recorded at our Oukaimeden Observatory(Morocco)between 2015 and 2016.Through this study,we have detected information on atmospheric dynamics that had not previously been detected.Indeed,the Van Hoof effect which results in a clear correlation between the radial velocities of hydrogen and those of the metallic lines has been observed and analyzed at different Blazhko phases.A correlation between the radial velocities of different metallic lines located in the lower atmosphere has been observed as well.For the first time,we were able to show that the amplitude of the radial velocity curves deduced from the lines of hydrogen and that of FeⅡ(λ4923.921?)increases toward the minimum of the Blazhko cycle and decreases toward the maximum of the same Blazhko cycle.Furthermore,we found that the Van Hoof effect is also modulated by the Blazhko effect.Thus,toward the minimum of the Blazhko cycle the Van Hoof effect is more visible and at the maximum of the Blazhko cycle,this effect is minimal.We also observed the temporal evolution of the amplitudes of the radial velocities of the lower and upper atmosphere.When observed over a long time,we can interpret it as a function of the Blazhko phases.
基金supported partly by project DN 08/20 of the Fund for Scientific Research of the Bulgarian Ministry of Education and Scienceproject RD 08-102 of Shumen University
文摘Intensive photometric and spectral observations of the variable star V2551 Cyg are presented.The light curve shape reveals that the target is a pulsating star, contrary to its previous classification as an eclipsing binary. The period and amplitude of the light curve, the amplitudes of color changes and the radial velocity curve of V2551 Cyg are similar to those of a high-amplitude δ Scuti variable. The target seems to pulsate with the fundamental mode. However, V2551 Cyg exhibits several important peculiarities:(i) the decreasing branch of its light curve is steeper than the increasing one;(ii) the radial velocity curve has a flat section in the phase range 0.7-1.2 and short increase of the negative radial velocity at phase 0.7;(iii) the rotational velocity is quite big for a HADS star;(iv) the Fourier coefficients of V2551 Cyg are quite different from those of HADS stars. The target classification is difficult due to these peculiarities.