This paper introduces the state of waterlands in China and discribes the applications of Remote Sensing (RS), Geographical Information System (G1S) and Global Positioning System (GPS) in wetland research, includ...This paper introduces the state of waterlands in China and discribes the applications of Remote Sensing (RS), Geographical Information System (G1S) and Global Positioning System (GPS) in wetland research, including land-coverclassification and change detection, wetland evolutionary processes, landscape-change analyses, channel migration, flood and wetlands resource monitoring and spatial quantitative analyses/modeling, ecosystem service evaluation, ecological processes and risk assessments, disease control, water quality monitoring/modeling, pollution monitoring/modeling, wetlands hydrology, wetland information systems and WebGIS. The limitations and needs for optimal use of these technologies are discussed, such as the limited advanced technical knowledge and skills, low awareness and capacity, unclear link between GIS output and policy making, lack of supporting policies and standards, lack of a wetlands geo-information networklimite, and the use of these techniques in wetland research. It is suggested that for realising true applications of RS, GIS and GPS technologies, the availability, accessibility, reliability, homogeneity, and continuity of wetlands-related geo-information enabling environment, policies and standards, and funding are needed.展开更多
Floods are phenomenon with significant socio-economic implications mainly for human loss, agriculture, livestock, soil loss and land degradation, for which many researchers try to identify the most appropriate methodo...Floods are phenomenon with significant socio-economic implications mainly for human loss, agriculture, livestock, soil loss and land degradation, for which many researchers try to identify the most appropriate methodologies by analyzing their temporal and spatial development. This study therefore attempts to employ the GIS-based multi-criteria decision analysis and analytical hierarchy process techniques to derive the flood risks management on rice productivity in the Gishari Agricultural Marshland in Rwamagana district, Rwanda. Here, six influencing potential factors to flooding, including river slope, soil texture, Land Use Land Cover through Land Sat 8, rainfall, river distance and Digital Elevation Model are considered for the delineation of flood risk zones. Data acquisition like Landsat 8 images, DEM, land use land cover, slope, and soil class in the study area were considered. Results showed that if the DEM is outdated or inaccurate due to changes in the terrain, such as construction, excavation, or erosion, the predicted flood patterns might not reflect the actual water flow. This could result unexpected flood extents and depths, potentially inundating rice fields that were not previously at risk and this, expectedly explained that the increase 1 m in elevation would reduce the rice productivity by 0.17% due to unplanned flood risks in marshland. It was found that the change in rainfall distribution in Gishari agricultural marshland would also decrease the rice productivity by 0.0018%, which is a sign that rainfall is a major factor of flooding in rice scheme. Rainfall distribution plays a crucial role in flooding analysis and can directly impact rice productivity. Oppositely, another causal factor was Land Use Land Cover (LULC), where the Multivariate Logistic Regression Model Analysis findings showed that the increase of one unit in Land Use Land Cover would increase rice productivity by 0.17% of the total rice productivity from the Gishari Agricultural Marshland. Based on findings from these techniques, the Gishari Agricultural Marshlands having steeped land with grassland is classified into five classes of flooding namely very low, low, moderate, high, and very high which include 430%, 361%, 292%, 223%, and 154%. Government of Rwanda and other implementing agencies and major key actors have to contribute on soil and water conservation strategies to reduce the runoff and soil erosion as major contributors of flooding.展开更多
Using GIS,GPS and GPRS,an intelligent monitoring and dispatch system of trucks and shovels in an open pit has been designed and developed.The system can monitor and dispatch open-pit trucks and shovels and play back t...Using GIS,GPS and GPRS,an intelligent monitoring and dispatch system of trucks and shovels in an open pit has been designed and developed.The system can monitor and dispatch open-pit trucks and shovels and play back their historical paths.An intelligent data algorithm is proposed in a practical application.The algorithm can count the times of deliveries of trucks and load- ings of shovels.Experiments on real scenes show that the performance of this system is stable and can satisfy production standards in open pits.展开更多
基金This project was supported by National Natural Science Foundation of China (No. 30270275) Acknowledgement We thank State Forest Administration and the Chinese Academy of Sciences with its many research institutes for providing the information required for this paper. Also, a sincere thank to Bai Yajun for her patience and endless support in discussions and email correspondence.
文摘This paper introduces the state of waterlands in China and discribes the applications of Remote Sensing (RS), Geographical Information System (G1S) and Global Positioning System (GPS) in wetland research, including land-coverclassification and change detection, wetland evolutionary processes, landscape-change analyses, channel migration, flood and wetlands resource monitoring and spatial quantitative analyses/modeling, ecosystem service evaluation, ecological processes and risk assessments, disease control, water quality monitoring/modeling, pollution monitoring/modeling, wetlands hydrology, wetland information systems and WebGIS. The limitations and needs for optimal use of these technologies are discussed, such as the limited advanced technical knowledge and skills, low awareness and capacity, unclear link between GIS output and policy making, lack of supporting policies and standards, lack of a wetlands geo-information networklimite, and the use of these techniques in wetland research. It is suggested that for realising true applications of RS, GIS and GPS technologies, the availability, accessibility, reliability, homogeneity, and continuity of wetlands-related geo-information enabling environment, policies and standards, and funding are needed.
文摘Floods are phenomenon with significant socio-economic implications mainly for human loss, agriculture, livestock, soil loss and land degradation, for which many researchers try to identify the most appropriate methodologies by analyzing their temporal and spatial development. This study therefore attempts to employ the GIS-based multi-criteria decision analysis and analytical hierarchy process techniques to derive the flood risks management on rice productivity in the Gishari Agricultural Marshland in Rwamagana district, Rwanda. Here, six influencing potential factors to flooding, including river slope, soil texture, Land Use Land Cover through Land Sat 8, rainfall, river distance and Digital Elevation Model are considered for the delineation of flood risk zones. Data acquisition like Landsat 8 images, DEM, land use land cover, slope, and soil class in the study area were considered. Results showed that if the DEM is outdated or inaccurate due to changes in the terrain, such as construction, excavation, or erosion, the predicted flood patterns might not reflect the actual water flow. This could result unexpected flood extents and depths, potentially inundating rice fields that were not previously at risk and this, expectedly explained that the increase 1 m in elevation would reduce the rice productivity by 0.17% due to unplanned flood risks in marshland. It was found that the change in rainfall distribution in Gishari agricultural marshland would also decrease the rice productivity by 0.0018%, which is a sign that rainfall is a major factor of flooding in rice scheme. Rainfall distribution plays a crucial role in flooding analysis and can directly impact rice productivity. Oppositely, another causal factor was Land Use Land Cover (LULC), where the Multivariate Logistic Regression Model Analysis findings showed that the increase of one unit in Land Use Land Cover would increase rice productivity by 0.17% of the total rice productivity from the Gishari Agricultural Marshland. Based on findings from these techniques, the Gishari Agricultural Marshlands having steeped land with grassland is classified into five classes of flooding namely very low, low, moderate, high, and very high which include 430%, 361%, 292%, 223%, and 154%. Government of Rwanda and other implementing agencies and major key actors have to contribute on soil and water conservation strategies to reduce the runoff and soil erosion as major contributors of flooding.
文摘Using GIS,GPS and GPRS,an intelligent monitoring and dispatch system of trucks and shovels in an open pit has been designed and developed.The system can monitor and dispatch open-pit trucks and shovels and play back their historical paths.An intelligent data algorithm is proposed in a practical application.The algorithm can count the times of deliveries of trucks and load- ings of shovels.Experiments on real scenes show that the performance of this system is stable and can satisfy production standards in open pits.