期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于统计理论方法的水文模型参数敏感性分析 被引量:38
1
作者 宋晓猛 孔凡哲 +1 位作者 占车生 韩继伟 《水科学进展》 EI CAS CSCD 北大核心 2012年第5期642-649,共8页
参数敏感性分析是模型不确定性量化的重要环节,有助于有效识别关键参数,减少参数的不确定性影响,进而提高参数优化效率。利用Morris筛选方法定性识别相对重要参数,耦合方差分解的Sobol方法和统计理论的响应曲面模型构建一种新的定量敏... 参数敏感性分析是模型不确定性量化的重要环节,有助于有效识别关键参数,减少参数的不确定性影响,进而提高参数优化效率。利用Morris筛选方法定性识别相对重要参数,耦合方差分解的Sobol方法和统计理论的响应曲面模型构建一种新的定量敏感性分析方法———RSMSobol方法。以长江支流沿渡河流域的日降雨径流过程模拟为例,系统分析4种不同目标函数响应条件下新安江模型的参数敏感性。结果表明Morris方法和RSMSobol方法的集成应用极大地提高了全局敏感性分析的效率,Morris定性筛选结果为定量评估减少了模型参数维数,采用代理模型技术的RSMSobol方法减少了模型的计算消耗。 展开更多
关键词 新安江模型 敏感性分析 rsmsobol方法 响应曲面方法 Morris方法
下载PDF
An efficient global sensitivity analysis approach for distributed hydrological model 被引量:12
2
作者 SONG Xiaomeng ZHAN Chesheng +1 位作者 XIA Jun KONG Fanzhe 《Journal of Geographical Sciences》 SCIE CSCD 2012年第2期209-222,共14页
Sensitivity analysis of hydrological model is the key for model uncertainty quantification. However, how to effectively validate model and identify the dominant parameters for distributed hydrological models is a bott... Sensitivity analysis of hydrological model is the key for model uncertainty quantification. However, how to effectively validate model and identify the dominant parameters for distributed hydrological models is a bottle-neck to achieve parameters optimization. For this reason, a new approach was proposed in this paper, in which the support vector machine was used to construct the response surface at first. Then it integrates the SVM-based response surface with the Sobol' method, i.e. the RSMSoboI' method, to quantify the parameter sensi- tivities. In this work, the distributed time-variant gain model (DTVGM) was applied to the Huaihe River Basin, which was used as a case to verify its validity and feasibility. We selected three objective functions (i.e. water balance coefficient WB, Nash-Sutcliffe efficiency coefficient NS, and correlation coefficient RC) to assess the model performance as the output responses for sensitivity analysis. The results show that the parameters gl and g2 are most important for all the objective functions, and they are almost the same to that of the classical approach. Furthermore, the RSMSobol method can not only achieve the quantification of the sensitivity, and also reduce the computational cost, with good accuracy compared to the classical approach. And this approach will be effective and reliable in the global sensitivity analysis for a complex modelling system. 展开更多
关键词 response surface methodology sensitivity analysis support vector machines rsmsobol method Huaihe River Basin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部