Plant immune receptors belonging to the receptor-like kinase (RLK) family play important roles in the recog- nition of microbial pathogens and activation of downstream defense responses. The Arabidopsis mutant snc4-...Plant immune receptors belonging to the receptor-like kinase (RLK) family play important roles in the recog- nition of microbial pathogens and activation of downstream defense responses. The Arabidopsis mutant snc4-1D con- tains a gain-of-function mutation in the RLK SNC4 (SUPPRESSOR OF NPRI-1, CONSTITUTIVE4), which leads to constitutive activation of defense responses. Analysis of suppressor mutants of snc4-1D identified two conserved splicing factors, SUA (SUPPRESSOR OF ABI3-5) and RSN2 (REQUIRED FOR SNC4-1D 2), that are required for the constitutive defense responses in snc4-1D. In sua and rsn2 mutants, SNC4 splicing is altered and the amount of 5NC4 transcripts is reduced. Further analysis showed that SUA and RSN2 are also required for the proper splicing of CERK1 (CHITIN ELICITOR RECEPTOR KINASE1), which encodes another RLK that functions as a receptor for chitin. In sua and rsn2 mutants, induction of reactive oxygen species by chitin is reduced and the non-pathogenic bacteria Pseudomonas syringae pv. tomato DC3OOOhrcC grows to higher titers than in wild-type plants. Our study suggests that pre-mRNA splicing plays important roles in the regulation of plant immunity mediated by the RLKs SNC4 and CERK1.展开更多
文摘Plant immune receptors belonging to the receptor-like kinase (RLK) family play important roles in the recog- nition of microbial pathogens and activation of downstream defense responses. The Arabidopsis mutant snc4-1D con- tains a gain-of-function mutation in the RLK SNC4 (SUPPRESSOR OF NPRI-1, CONSTITUTIVE4), which leads to constitutive activation of defense responses. Analysis of suppressor mutants of snc4-1D identified two conserved splicing factors, SUA (SUPPRESSOR OF ABI3-5) and RSN2 (REQUIRED FOR SNC4-1D 2), that are required for the constitutive defense responses in snc4-1D. In sua and rsn2 mutants, SNC4 splicing is altered and the amount of 5NC4 transcripts is reduced. Further analysis showed that SUA and RSN2 are also required for the proper splicing of CERK1 (CHITIN ELICITOR RECEPTOR KINASE1), which encodes another RLK that functions as a receptor for chitin. In sua and rsn2 mutants, induction of reactive oxygen species by chitin is reduced and the non-pathogenic bacteria Pseudomonas syringae pv. tomato DC3OOOhrcC grows to higher titers than in wild-type plants. Our study suggests that pre-mRNA splicing plays important roles in the regulation of plant immunity mediated by the RLKs SNC4 and CERK1.