Determine the location of a target has gained considerable interest over the past few years. The Received Signal Strength(RSS) measurements and Differential RSS(DRSS) measurements can be converted to distance or dista...Determine the location of a target has gained considerable interest over the past few years. The Received Signal Strength(RSS) measurements and Differential RSS(DRSS) measurements can be converted to distance or distance ratio estimates for constructing a set of linear equations. Based on these linear equations, a constrained weighted least Squares(CWLS) algorithm for target localization is derived. In addition, an iterative technique based on Newton's method is utilized to give a solution. The covariance and bias of the CWLS algorithm is derived using perturbation analysis. Simulation shows that the proposed estimator achieves better performance than existing algorithms with reasonable complexity.展开更多
A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as...A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.展开更多
With the rapid evolution of WSNs technology, it is very important to evaluate link quality quickly and accurately, so that the routing protocols can take relevant strategies in time to keep the entire network working ...With the rapid evolution of WSNs technology, it is very important to evaluate link quality quickly and accurately, so that the routing protocols can take relevant strategies in time to keep the entire network working steadily and efficiently. However, the issue of layer is still open to research. To tackle this issue, a improving link quality assessment methods on physical novel link quality assessment metric called S3LQA is proposed, which estimates the link quality of wireless sensor networks by CC2420 wireless radio frequency transceiver principles and free space propagation theory. The metric adopts both complete and incomplete packages to improve the evaluation performance effectively based on IEEE802. 15.4 frame format and DSSS-O- QPSK mechanism. The experimental results show that the proposed method can improve energy cost and achieves hatter real-timin nerformance than traditional counting-based (PRR) link aualitv assessment metric.展开更多
The performance of a cellular location system based on received signal strength difference (RSSD) is investigated. In the cellular location system, each mobile station needs to measure the signal strength transmitte...The performance of a cellular location system based on received signal strength difference (RSSD) is investigated. In the cellular location system, each mobile station needs to measure the signal strength transmitted by surrounding base stations, and sends its measurements to the service base station. Using the strength difference between the service base station and neighboring base stations, the position of a mobile station is estimated. The related Cramer-Rao lower bound (CRLB) on the location error of this method was derived, and numerical simulations are made to discuss the influences of the number of base stations, correlation coefficient of shadowing attenuation, and cell radius on CRLB. The results show that the CRLB is positively correlated with the standard deviation of shadowing attenuation and cell radius, but negatively correlated with the number of base stations and the correlation coefficient of shadowing attenuation. In addition, the CRLB results obtained in this paper were compared with those of the cellular location system based on received signal strength (RSS) measurements, which reveals that the former is more tight.展开更多
Automatic robot navigation is being utilized in many industries for the purpose of high speed work delivery. Color follower, fix path follower robots are current solution to this activities but dynamic path configurat...Automatic robot navigation is being utilized in many industries for the purpose of high speed work delivery. Color follower, fix path follower robots are current solution to this activities but dynamic path configuration is not possible in these robots. Hence new system proposes effective and fully dynamic path follower robots using RFID and directional antenna. Radio Frequency Identification (RFID) system permits automatic identification of objects with RFID tags using radio waves which have been widely used in mobile robot navigation, localization and mapping both in indoor and outdoor environment. This article presents a navigation strategy for autonomous mobile robot using passive RFID system. Proposed robot system is provided with RFID tag functionality which will load tag number and direction instruction. At some turning point, user will put RF tag, this tag will be read by RF reader which is placed on robot. As per direction instruction robot will change the direction and reach to the destination. Also as per the movement, robot will send its GPS location to PC (Personal Computer) which will be displayed on PC. Hence main goal is to provide more reliable and low energy consumption based indoor positioning system which will be achieved using directional antenna.展开更多
针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统...针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统基于CSI幅值的指纹定位基础上增加相位信息对定位结果进行修正,之后对RSSI指纹和PC-CSI指纹的定位结果加权重定位。实验结果表明,提出的加权融合指纹定位算法与基于CSI的主动定位算法相比,平均定位误差(mean position error,MPE)降低了36.2%,能满足室内定位需求。展开更多
在无线传感器网络中,针对接收信号强度指示(Received Signal Strength Indication,RSSI)在煤矿井下长距离巷道内信号衰减快、测距精度偏差大等问题,提出了一种基于RSSI的高斯滤波加权质心定位算法。采用高斯滤波对采集的RSSI值进行修正...在无线传感器网络中,针对接收信号强度指示(Received Signal Strength Indication,RSSI)在煤矿井下长距离巷道内信号衰减快、测距精度偏差大等问题,提出了一种基于RSSI的高斯滤波加权质心定位算法。采用高斯滤波对采集的RSSI值进行修正,一定程度上减轻环境造成的影响。将RSSI测距算法与改进加权质心算法相结合,得出待测节点坐标位置。仿真试验表明,该改进算法与原有定位算法相比,定位误差明显降低,可基本满足煤矿井下人员的安全生产和定位需求。展开更多
室内多目标的高精度定位技术是实现定制化智能服务的关键。当前,基于射频识别技术(Radio Frequency Identification,RFID)的室内定位技术因其成本低、易于部署和多目标感知等优势,受到了学术界和产业界的广泛关注。然而,传统的基于RFID...室内多目标的高精度定位技术是实现定制化智能服务的关键。当前,基于射频识别技术(Radio Frequency Identification,RFID)的室内定位技术因其成本低、易于部署和多目标感知等优势,受到了学术界和产业界的广泛关注。然而,传统的基于RFID的多目标相对定位系统需要使用多组接收天线进行数据收发,这导致系统的部署成本高昂,同时接收信号强度指示(Received Signal Strength Indication,RSSI)序列还会出现数据中断的问题。为解决这些问题,提出了一种基于RSSI序列特性的RFID多标签相对定位方法。该方法首先采用匀速移动天线的方式来获取多目标标签的接收RSSI信号序列;然后,对接收RSSI数据进行预处理来填充缺失数据,并构建基于余弦相似度的序列相似度量表;最后,从多个组维度设计不同的标签分组算法,以实现RFID多标签的相对定位。通过对典型室内多组RFID标签阵列进行大量相对定位测试,实验结果表明,所提方法的RFID标签相对定位平均准确率超过92%,对5*5的天线阵列平均定位计算时长小于1 s,相比其他工作计算效率提高了近10倍。展开更多
The wireless communication system's performance is greatly constrained by the wireless channel characteristics,especially in some specific environment.Therefore,signal transmission will be greatly impacted even if...The wireless communication system's performance is greatly constrained by the wireless channel characteristics,especially in some specific environment.Therefore,signal transmission will be greatly impacted even if not in a complicated topography.Testing results show that it is hardly to characterize the radio propagation properties for the antenna installed on the ground.In order to ensure a successful communication,the radio frequency(RF)wireless signal intensity monitor system was designed.We can get the wireless link transmission loss through measuring signal strength from received node.The test shows that the near-ground wireless signal propagation characteristics still can be characterized by the log distance propagation loss model.These results will conduce to studying the transmission characteristic of Near-Earth wireless signals and will predict the coverage of the earth's surface wireless sensor network.展开更多
Localizing a jammer in an indoor environment in wireless sensor networks becomes a significant research problem due to the ease of blocking the communication between legitimate nodes. An adversary may emit radio frequ...Localizing a jammer in an indoor environment in wireless sensor networks becomes a significant research problem due to the ease of blocking the communication between legitimate nodes. An adversary may emit radio frequency to prevent the transmission between nodes. In this paper, we propose detecting the position of the jammer indoor by using the received signal strength and Kalman filter (KF) to reduce the noise due to the multipath signal caused by obstacles in the indoor environment. We compare our work to the Linear Prediction Algorithm (LP) and Centroid Localization Algorithm (CL). We observed that the Kalman filter has better results when estimating the distance compared to other algorithms.展开更多
对一种基于蓝牙RSSI(received signal strength indicator)结合机器学习算法的室内定位技术进行了研究。以蓝牙低功耗信标作为发射节点,接收移动节点的RSSI信号,通过三坐标测算技术,结合k近邻(k⁃nearest neighbor,k⁃NN)机器学习算法,参...对一种基于蓝牙RSSI(received signal strength indicator)结合机器学习算法的室内定位技术进行了研究。以蓝牙低功耗信标作为发射节点,接收移动节点的RSSI信号,通过三坐标测算技术,结合k近邻(k⁃nearest neighbor,k⁃NN)机器学习算法,参考已知信标节点对移动节点RSSI数据进行分类,估算出待测点坐标,从而定位室内用户位置。所研究的室内定位技术,综合运用了蓝牙低功耗信号处理、RSSI测距及机器学习等多种技术,能精确地用于各种静态或动态的应用室内定位场景。在某高校图书馆室内部署本文技术方案,测试结果表明机器学习结合蓝牙RSSI的室内定位精度相比传统定位方法得到提高。展开更多
文摘Determine the location of a target has gained considerable interest over the past few years. The Received Signal Strength(RSS) measurements and Differential RSS(DRSS) measurements can be converted to distance or distance ratio estimates for constructing a set of linear equations. Based on these linear equations, a constrained weighted least Squares(CWLS) algorithm for target localization is derived. In addition, an iterative technique based on Newton's method is utilized to give a solution. The covariance and bias of the CWLS algorithm is derived using perturbation analysis. Simulation shows that the proposed estimator achieves better performance than existing algorithms with reasonable complexity.
基金supported by the National Basic Research Program of China (973Program) under Grant No. 2010CB731800the National Natural Science Foundation of China under Grant No. 60934003 and 61074065the Key Project for Natural Science Research of Hebei Education Departmentunder Grant No. ZD200908
文摘A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61262020)Aeronautical Science Foundation of China(Grant No.2010ZC56008 and 2012ZC56006)Key Technology R&D Program of Jiangxi Province(Grant No.2009BGA01000 and 20111BBE50030)
文摘With the rapid evolution of WSNs technology, it is very important to evaluate link quality quickly and accurately, so that the routing protocols can take relevant strategies in time to keep the entire network working steadily and efficiently. However, the issue of layer is still open to research. To tackle this issue, a improving link quality assessment methods on physical novel link quality assessment metric called S3LQA is proposed, which estimates the link quality of wireless sensor networks by CC2420 wireless radio frequency transceiver principles and free space propagation theory. The metric adopts both complete and incomplete packages to improve the evaluation performance effectively based on IEEE802. 15.4 frame format and DSSS-O- QPSK mechanism. The experimental results show that the proposed method can improve energy cost and achieves hatter real-timin nerformance than traditional counting-based (PRR) link aualitv assessment metric.
基金The National Natural Science Foundationof China (No.60472089)Southwest Jiaotong University Young Stuff Startup Research Project (No.2007Q134)
文摘The performance of a cellular location system based on received signal strength difference (RSSD) is investigated. In the cellular location system, each mobile station needs to measure the signal strength transmitted by surrounding base stations, and sends its measurements to the service base station. Using the strength difference between the service base station and neighboring base stations, the position of a mobile station is estimated. The related Cramer-Rao lower bound (CRLB) on the location error of this method was derived, and numerical simulations are made to discuss the influences of the number of base stations, correlation coefficient of shadowing attenuation, and cell radius on CRLB. The results show that the CRLB is positively correlated with the standard deviation of shadowing attenuation and cell radius, but negatively correlated with the number of base stations and the correlation coefficient of shadowing attenuation. In addition, the CRLB results obtained in this paper were compared with those of the cellular location system based on received signal strength (RSS) measurements, which reveals that the former is more tight.
文摘Automatic robot navigation is being utilized in many industries for the purpose of high speed work delivery. Color follower, fix path follower robots are current solution to this activities but dynamic path configuration is not possible in these robots. Hence new system proposes effective and fully dynamic path follower robots using RFID and directional antenna. Radio Frequency Identification (RFID) system permits automatic identification of objects with RFID tags using radio waves which have been widely used in mobile robot navigation, localization and mapping both in indoor and outdoor environment. This article presents a navigation strategy for autonomous mobile robot using passive RFID system. Proposed robot system is provided with RFID tag functionality which will load tag number and direction instruction. At some turning point, user will put RF tag, this tag will be read by RF reader which is placed on robot. As per direction instruction robot will change the direction and reach to the destination. Also as per the movement, robot will send its GPS location to PC (Personal Computer) which will be displayed on PC. Hence main goal is to provide more reliable and low energy consumption based indoor positioning system which will be achieved using directional antenna.
文摘针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统基于CSI幅值的指纹定位基础上增加相位信息对定位结果进行修正,之后对RSSI指纹和PC-CSI指纹的定位结果加权重定位。实验结果表明,提出的加权融合指纹定位算法与基于CSI的主动定位算法相比,平均定位误差(mean position error,MPE)降低了36.2%,能满足室内定位需求。
文摘在无线传感器网络中,针对接收信号强度指示(Received Signal Strength Indication,RSSI)在煤矿井下长距离巷道内信号衰减快、测距精度偏差大等问题,提出了一种基于RSSI的高斯滤波加权质心定位算法。采用高斯滤波对采集的RSSI值进行修正,一定程度上减轻环境造成的影响。将RSSI测距算法与改进加权质心算法相结合,得出待测节点坐标位置。仿真试验表明,该改进算法与原有定位算法相比,定位误差明显降低,可基本满足煤矿井下人员的安全生产和定位需求。
文摘室内多目标的高精度定位技术是实现定制化智能服务的关键。当前,基于射频识别技术(Radio Frequency Identification,RFID)的室内定位技术因其成本低、易于部署和多目标感知等优势,受到了学术界和产业界的广泛关注。然而,传统的基于RFID的多目标相对定位系统需要使用多组接收天线进行数据收发,这导致系统的部署成本高昂,同时接收信号强度指示(Received Signal Strength Indication,RSSI)序列还会出现数据中断的问题。为解决这些问题,提出了一种基于RSSI序列特性的RFID多标签相对定位方法。该方法首先采用匀速移动天线的方式来获取多目标标签的接收RSSI信号序列;然后,对接收RSSI数据进行预处理来填充缺失数据,并构建基于余弦相似度的序列相似度量表;最后,从多个组维度设计不同的标签分组算法,以实现RFID多标签的相对定位。通过对典型室内多组RFID标签阵列进行大量相对定位测试,实验结果表明,所提方法的RFID标签相对定位平均准确率超过92%,对5*5的天线阵列平均定位计算时长小于1 s,相比其他工作计算效率提高了近10倍。
文摘The wireless communication system's performance is greatly constrained by the wireless channel characteristics,especially in some specific environment.Therefore,signal transmission will be greatly impacted even if not in a complicated topography.Testing results show that it is hardly to characterize the radio propagation properties for the antenna installed on the ground.In order to ensure a successful communication,the radio frequency(RF)wireless signal intensity monitor system was designed.We can get the wireless link transmission loss through measuring signal strength from received node.The test shows that the near-ground wireless signal propagation characteristics still can be characterized by the log distance propagation loss model.These results will conduce to studying the transmission characteristic of Near-Earth wireless signals and will predict the coverage of the earth's surface wireless sensor network.
文摘Localizing a jammer in an indoor environment in wireless sensor networks becomes a significant research problem due to the ease of blocking the communication between legitimate nodes. An adversary may emit radio frequency to prevent the transmission between nodes. In this paper, we propose detecting the position of the jammer indoor by using the received signal strength and Kalman filter (KF) to reduce the noise due to the multipath signal caused by obstacles in the indoor environment. We compare our work to the Linear Prediction Algorithm (LP) and Centroid Localization Algorithm (CL). We observed that the Kalman filter has better results when estimating the distance compared to other algorithms.
文摘对一种基于蓝牙RSSI(received signal strength indicator)结合机器学习算法的室内定位技术进行了研究。以蓝牙低功耗信标作为发射节点,接收移动节点的RSSI信号,通过三坐标测算技术,结合k近邻(k⁃nearest neighbor,k⁃NN)机器学习算法,参考已知信标节点对移动节点RSSI数据进行分类,估算出待测点坐标,从而定位室内用户位置。所研究的室内定位技术,综合运用了蓝牙低功耗信号处理、RSSI测距及机器学习等多种技术,能精确地用于各种静态或动态的应用室内定位场景。在某高校图书馆室内部署本文技术方案,测试结果表明机器学习结合蓝牙RSSI的室内定位精度相比传统定位方法得到提高。