期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia 被引量:1
1
作者 Olfa TERWAYET BAYOULI ZHANG Wanchang Houssem TERWAYET BAYOULI 《Journal of Arid Land》 SCIE CSCD 2023年第11期1269-1289,共21页
Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and incre... Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments. 展开更多
关键词 DROUGHTS soil erosion vegetation health index(VHI) revised universal soil loss equation(rusle)model southeastern Tunisia
下载PDF
Watershed prioritization for conservation planning using RUSLE and morphometric methods,Northwestern Ethiopia
2
作者 Agumassie Genet GELA Daniel Ayalew MENGISTU Daniel Asfaw BEKELE 《Journal of Mountain Science》 SCIE CSCD 2023年第8期2242-2262,共21页
Soil erosion and the subsequent sedimentation are serious environmental problems.Improper land management coupled with intense rainfall has complicated the problem in the Ethiopian highlands.Consequently,soil loss cos... Soil erosion and the subsequent sedimentation are serious environmental problems.Improper land management coupled with intense rainfall has complicated the problem in the Ethiopian highlands.Consequently,soil loss costs a profound amount of the national GDP and deters land productivity.Quantifying soil loss and prioritizing areas for conservation is imperative for proper planning and resource management.Therefore,this study aimed at estimating the mean annual soil loss rate of Gilgel Abay watershed which has critical implications on Lake Tana and Abbay River(Upper Blue Nile River),using RUSLE and morphometric analysis methods.Datasets including rainfall,soil,Digital Elevation Model and land use/land cover were used to generate important parameters required for the soil loss estimation.Data collected through field observation,consultation with experts and document analysis were used for validation purposes.The results of the study reveal that the watershed experienced an average soil loss rate of 39.8 t ha^(-1)yr^(-1).Subsequently,nearly 25%(37,038 ha)of the watershed is threatened by moderate to very severe soil loss.Among the four sub watersheds,sub watershed 3(S3)and sub watershed 4(S4),which consist of about 65%(105,000 ha)of the total area of the study watershed,experienced an annual soil loss rate of over 30 t ha^(-1)yr^(-1).The amount of soil loss that the study watershed has experienced is above the soil loss tolerance level of Ethiopia(2-18 t ha^(-1)yr^(-1))and the tropical region(10 t ha^(-1)yr^(-1)).Similarly,the results of morphometric analysis showed that the studied watershed has S-shaped hypsometric curve,an indication for maturity stage of landscape development.The studied watershed is also characterized by a non-circular shaped drainage with rugged and dissected topography that contributes to high flash flood,peak discharge and incidence of soil loss.The result of both models signified that S3 and S4 are highly susceptible to soil erosion.Therefore,these two sub watersheds need priority for soil and water conservation(SWC)measures.Furthermore,the study demonstrated the importance of the integration of different models in the identification of soil erosion prone areas and prioritization for the proper implementation of SWC measures. 展开更多
关键词 Soil loss rusle model Morphometric analysis Gilgel Abay watershed
下载PDF
Soil erosion differences in paired grassland and forestland catchments on the Chinese Loess Plateau
3
作者 YANG Si-qi LUO Da +1 位作者 HAN Hao JIN Zhao 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1336-1348,共13页
In this study,two adjacent gauged catchments on the Chinese Loess Plateau were selected,in which one catchment was afforested and one was restored with natural vegetation in 1954.The distributions of soil erosion rate... In this study,two adjacent gauged catchments on the Chinese Loess Plateau were selected,in which one catchment was afforested and one was restored with natural vegetation in 1954.The distributions of soil erosion rates were estimated between 2010 and 2020 with a high spatial resolution of 2 m in the paired catchments based on the Revised Universal Soil Loss Equation model(RUSLE)and Geographic Information Systems(GIS).The results showed that the simulated soil erosion rates in 2010-2020 averaged 12.58 and 8.56 t ha^(-1)a^(-1)for the grassland and forestland catchment,respectively.Moreover,areas with high soil erosion rates(>80t ha^(-1)a^(-1))were mainly distributed in the topography with steep slope gradients(>45°).Comparisons between simulated soil erosion rates and observed annual sediment loads indicated that the simulation results of the grassland catchment were lower than the observed values,while it was reversed in the forestland catchment.We conclude that the RUSLE model cannot simulate the gravity erosion induced by extreme rainfall events.For the forestland catchment,insufficient streamflow and dense vegetation coverage are crucial factors resulting in hindering the movement of sediments. 展开更多
关键词 Catchment comparison Soil erosion rusle model Vegetation effect Topography effect Spatial analysis
下载PDF
Elevation,bedrock exposure,land use,interbedded limestone and clastic rock,and vegetation coverage dominate the spatiotemporal variability of soil erosion in karst basin
4
作者 CHEN Mei GAO Jia-yong +2 位作者 CHEN Hong-lian JING Jun LI Rui 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2519-2535,共17页
Soil erosion is a prominent environmental problem in karst regions.Exploring the spatiotemporal variability of soil erosion and the factors that influence soil erosion is of great significance for regional soil erosio... Soil erosion is a prominent environmental problem in karst regions.Exploring the spatiotemporal variability of soil erosion and the factors that influence soil erosion is of great significance for regional soil erosion prevention and control.However,the mechanisms influencing the characteristic features of the karst basins,such as bedrock exposure and lithology,still need to be further explored.This study used GIS technology,the Revised Universal Soil Loss Equation model,Getis–Ord Gi*,and partial least squares regression(PLSR)to identify the dominant factors influencing soil erosion and the spatiotemporal variability of soil erosion in 31 sub-basins of the Dabang River Basin(DRB),a typical karst area of Southwest China,from 2010 to 2020.The results indicated that soil erosion in the DRB from 2010 to 2020 was generally decreasing,the mean soil erosion in the DRB in 2010,2015 and 2020 was 18.46,16.51 and 15.29 t ha^(-1)a^(-1),respectively.During the study period,the area of slight erosion increased by 26.39%(706.54 km^(2)),while severe erosion enlarged by 26.36 km^(2).Spatially,the DRB was primarily affected by medium and slight soil erosion.The hot spot areas of soil erosion(key control areas)were mainly concentrated in the central and southern parts of the basin,decreasing each year,and the area of soil erosion hot pots has decreased from 43.22%to 20.60%.PLSR decoupling results show that elevation,bedrock exposure,land use type,interbedded limestone and clastic rock,and vegetation coverage were identified as the key variables affecting soil erosion,explaining 52.8%of soil erosion variability,with a high value of the Variable Importance on Projection(VIP)more than 1.These results can be used as a reference for comprehensive control of soil erosion and water loss in the basin. 展开更多
关键词 Soil erosion Karst basin rusle model Spatiotemporal variability PLSR
下载PDF
Impacts of Agricultural Activities on Land Degradation along the Bomboré River in Burkina Faso
5
作者 Joseph Nomwindé Kabore Elie Serge Gaëtan Sauret +2 位作者 Wennegouda Jean Pierre Sandwidi Raoul Christian Ouedraogo Brahima Sorgho 《Agricultural Sciences》 CAS 2023年第2期176-195,共20页
Land along the Bomboré River in the rural commune of Mogtédo in Burkina Faso is experiencing degradation. The explanatory causes of this degradation constitute the subject of this study. To do this, a survey... Land along the Bomboré River in the rural commune of Mogtédo in Burkina Faso is experiencing degradation. The explanatory causes of this degradation constitute the subject of this study. To do this, a survey was conducted among agricultural producers deployed along the watercourse. Soil profiles were described and samples were taken to analyze pH, soil organic carbon, soil organic matter, total nitrogen, and texture. The RUSLE model approach based on landstat8 OLI/TIRS and SRTM satellite images dated December 17, 2021 with fairly good radiometric, spatial, and spectral resolution was used to calculate the land loss rate. In terms of results, the potentially irrigable areas that spread out on both sides of the banks of the river cover 209.23 ha with a perimeter of 6.16 km. The number of irrigators is 26 producers and they grow 17.92 ha of vegetables. Soil analyzes indicate the presence of a moderate acid on the vertisol with a pH between 5.57 and 5.86. On the depth 0 - 30 cm of the horizon, the color of the horizons ranges from 5YR4/2 on the talweg and on the right bank to 7.5YR3/2 on the left bank and presents no risk of salinity because the electrical conductivity measured is less than 1dS/cm. The diagnosis of hydromechanical equipment shows that producers use 46 motor pumps for irrigation, of which 15 motor pumps run on gasoline and 31 motor pumps on butane gas with a ratio of 1.7 motor pumps per producer. The number of Polyvinyl Chloride (PVC) pipes used by producers in combination with a motor pump gives an average of 44 per farmer. In terms of mineral fertilization, the gross doses used by producers are 415.53 kg/ha of NPK and 201.55 kg/ha of urea, while the quantities of phytosanitary products are 3.99 l/ha of pesticides and 1.42 l/ha of herbicides. Agricultural activities emit about 222,436.66 kgCO<sub>2</sub>eq into the atmosphere, whose emissions from motor pumps represent 84.52% of these total emissions. The land loss estimate gives an average rate of 2.30 t/ha/year of land loss. This loss is due to the effects of poor agricultural practices, water erosion, and the drainage channels and gullies created by the anarchic installation of dwellings around the edges of the river. This study calls for more monitoring actions to sustainably safeguard the soil and water resources of this river which contribute to the survival of more than 73,214 inhabitants. 展开更多
关键词 Agricultural Irrigation Land Degradation rusle model Erosion Rate ENVIRONMENT
下载PDF
Geo-Hazard Susceptibility Assessment and Its Impacts on Livelihoods in Kerio Valley, Kenya 被引量:1
6
作者 Mark Boitt John Gathoni 《International Journal of Geosciences》 2022年第3期199-243,共45页
Geohazards are a recurrent issue in the Kerio River catchment of Kenya, which usually results in life and property loss. This research focuses on mapping geo-hazard risk zones of the region. The risk zones were develo... Geohazards are a recurrent issue in the Kerio River catchment of Kenya, which usually results in life and property loss. This research focuses on mapping geo-hazard risk zones of the region. The risk zones were developed from a combination of land use land cover maps, agroecological zones maps and soil erosion maps using the Analytical Hierarchy Process method of multi-criteria analysis. The final results depict the geohazard risk maps which show the susceptibility of different areas in the catchment (classified as risk zones) to hazards. The zones range from no risk zones to very high-risk zones. The results showed that the lowlands are most susceptible to hazards as they were classified as high-risk zones. These risk zone areas have impacts on the socio-economic development hence negatively impacting livelihoods in the area. 展开更多
关键词 Kerio Valley Basin Land Use Land Cover Moisture Zones Agroecological Zones Soil Erosion rusle model Geohazard Risk Zones Multivariate Clustering Analytical Hierarchy Process
下载PDF
Improved Modelling of Soil Loss in El Badalah Basin: Comparing the Performance of the Universal Soil Loss Equation, Revised Universal Soil Loss Equation and Modified Universal Soil Loss Equation Models by Using the Magnetic and Gravimetric Prospection Outcomes
7
作者 Naima Azaiez 《Journal of Geoscience and Environment Protection》 2021年第4期50-73,共24页
Water erosion is a natural fact in the cycle of shaping the earth’s landforms and the most evident form of land degradation on a planetary scale </span></span><a href="#R20"><span style... Water erosion is a natural fact in the cycle of shaping the earth’s landforms and the most evident form of land degradation on a planetary scale </span></span><a href="#R20"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(Roose & De Noni, 2004;</span></span></span><span><span></span></span></a><span><span><span style="font-family:"color:#538135;"> </span></span></span><a href="#R08"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Dautrebande & Sohier, 2006;</span></span></span><span><span></span></span></a><span><span><span style="font-family:"color:#538135;"> </span></span></span><a href="#R25"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Toumi et al., 2013;</span></span></span><span><span></span></span></a><span><span><span style="font-family:"color:#538135;"> </span></span></span><a href="#R03"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Azaiez, 2020a)</span></span></span><span><span></span></span></a><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. Its effects have largely affected the rural landscape. Although it is the result of an ancient and primeval climatic and tectonic forcing, man’s footprint in its intensification remains a reality. A real awareness of this problem on the part of scientists is reflected in the many studies on understanding the risks. Experiments have been carried out, equations and models have been developed with the aim of preserving the soil. The watershed of wadi El Badalah, the subject of this study, is not excluded from this risk. The present research is a new comparative contribution to the quantification of soil loss based on four empirical models (Universal Soil Loss Equation USLE, Revised Universal Soil Loss Equation RUSLE, Modified Universal Soil Loss Equation MUSLE and the adjusted model). The main objective of this research project is to test several empirical models of quantification of soil loss, extensively tested on a global scale, to discuss the potential of each model in order to choose the most appropriate for the El Badalah basin. The method is based on geotechnical and geophysical investigations. It consists of determining the anomalies of the subsoil based on the difference in density and the resistivity of the heterogeneous constituents of the subsoil. This is in order to look for sectors potentially favorable to infiltration at the expense of runoff. 展开更多
关键词 Adjustment Process Magnetic and Gravimetric Prospection Soil Loss USLE rusle and MUSLE models
下载PDF
退耕还林和气候变化对长江流域土壤侵蚀减少的影响
8
作者 李柏延 王昀琛 《Journal of Geographical Sciences》 SCIE CSCD 2024年第3期527-542,共16页
The area of land that is affected by soil erosion in the Yangtze River has been reduced by 146,000 km~2(accounting for 27%of the entire Yangtze River)since 2000.However,the contributions of different tributaries to th... The area of land that is affected by soil erosion in the Yangtze River has been reduced by 146,000 km~2(accounting for 27%of the entire Yangtze River)since 2000.However,the contributions of different tributaries to this soil erosion decline and the underlying causes have not been determined.Here we quantify the soil erosion decline in the Yangtze River and the impacts of the Grain-for-Green Programme(GFGP)and climate change using the RUSLE model and statistical methods.The results were as follows:(1)After the implementation of the GFGP,soil erosion decreased in ten sub-basins excluding the Dongting Lake catchment;(2)Soil erosion was mainly affected by the GFGP and the rainfall erosivity.Specifically,the contributions of the GFGP and rainfall erosivity to soil erosion decline are estimated to be 70.12%and 29.88%,respectively.(3)“Scenario#9”means the combination of slope(15°-25°)of retired farmland converted to shrub land and slope(>25°)of retired farmland converted to grassland.Considering scenario feasibility and management targets,Scenario#9 was the most appropriate land use scenario for the Yangtze River.This study offers insights into managing and reducing soil erosion in the future. 展开更多
关键词 soil erosion rusle model Grain for Green Programme climate change Yangtze River
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部