This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in lin...This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.展开更多
Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribut...Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribution and scattering source detection. For the perfect adaptability to targets and the HF of the HF integrated RCS calculation platform, this technique is suitable to solve large complex targets and has lower requirement to the target modeling. A comparison with the result of 2-D radar imaging confirms the accuracy and reliability of this technique in recognition of the major scattering source on complex targets. This technique provides the foundation for rapid integrated evaluation of the scattering performance and 3-D scattering model reconstruction of large complex targets.展开更多
The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurem...The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurements. There are numerous polarimetric calibration algorithms. Some complex expressions in these algo-rithms cannot be easily used in an engineering practice. A radar polarimetric coefficients matrix (RPCM) with a simpler expression is presented for the monostatic radar polarization scattering matrix (PSM) measurement. Using a rhombic dihedral corner reflector and a metal ic sphere, the RPCM can be obtained by solving a set of equations, which can be used to find the true PSM for any target. An example for the PSM of a metal ic dish shows that the proposed method obviously improves the accuracy of cross-polarized RCS measurements.展开更多
文摘This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.
基金supported by the National Natural Science Foundation of China (Grant No.90305026)
文摘Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribution and scattering source detection. For the perfect adaptability to targets and the HF of the HF integrated RCS calculation platform, this technique is suitable to solve large complex targets and has lower requirement to the target modeling. A comparison with the result of 2-D radar imaging confirms the accuracy and reliability of this technique in recognition of the major scattering source on complex targets. This technique provides the foundation for rapid integrated evaluation of the scattering performance and 3-D scattering model reconstruction of large complex targets.
基金supported by the National Basic Research Program of China(973 Program)(2010CB731905)
文摘The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurements. There are numerous polarimetric calibration algorithms. Some complex expressions in these algo-rithms cannot be easily used in an engineering practice. A radar polarimetric coefficients matrix (RPCM) with a simpler expression is presented for the monostatic radar polarization scattering matrix (PSM) measurement. Using a rhombic dihedral corner reflector and a metal ic sphere, the RPCM can be obtained by solving a set of equations, which can be used to find the true PSM for any target. An example for the PSM of a metal ic dish shows that the proposed method obviously improves the accuracy of cross-polarized RCS measurements.