In this report the combined method of correlation radar signal(RS)processing based on the theory of atomic functions(AF)is examined.Examples of using of new Kravchenko probability weight functions(WF)designs are prese...In this report the combined method of correlation radar signal(RS)processing based on the theory of atomic functions(AF)is examined.Examples of using of new Kravchenko probability weight functions(WF)designs are presented.Quality functional to estimate accuracy and efficiency of RS processing for concrete physical models is constructed.It is shown that the proposed approach significantly improves the quality of the coherent analysis of RS.展开更多
The development of microwave sensors in recent two years in China are in troduced with an emphasis on spaceborne sensors without the applications in cluded. The microwave sensors as the main payloads to be boarded on ...The development of microwave sensors in recent two years in China are in troduced with an emphasis on spaceborne sensors without the applications in cluded. The microwave sensors as the main payloads to be boarded on the future operational satellites, such as FY-3 meteorological satellites and HY-2 marine satellite are introduced with much in detail. Besides these, four new sensors are outlined, i.e. the imaging radar altimeter,synthetic aperture radiometer, and polarimetric radiometer. Two recently conducted flight experiment campaigns are also introduced with results shown.展开更多
HF (high frequency) radar sounder technology has been developed for several missions of Mars surface/subsurface exploration. This paper presents a model of rough surface and stratified sub-surfaces to describe the mul...HF (high frequency) radar sounder technology has been developed for several missions of Mars surface/subsurface exploration. This paper presents a model of rough surface and stratified sub-surfaces to describe the multi-layer structure of Mars polar deposits. Based on numerical simulation of radar echoes from rough surface/stratified interfaces, an inversion approach is developed to obtain the parameters of Polar Layered Deposits, i.e. layers thickness and dielectric constants. As a validation example, the SHARAD radar sounder data of the Promethei Lingula of Mars South Polar region is adopted for parameters inversion. The result of stratification is also analyzed and compared with the optical photo of the deep cliff of Chasma Australe canyon. Dielectric inversions show that the deposit media are not uniform, and the dielectric constants of the Promethei Lingula surfaces are large, and become reduced around the depth of 20 m - 30 m, below where most of the deposits are nearly pure ice, except a few thin layers with a lot of dust.展开更多
Space-borne high frequency (HF) radar sounder is an effective tool for investigation of lunar subsurface structure in lunar exploration. The primary strategy of radar sounder technology for subsurface structure detect...Space-borne high frequency (HF) radar sounder is an effective tool for investigation of lunar subsurface structure in lunar exploration. The primary strategy of radar sounder technology for subsurface structure detection is utilization of the nadir echoes time delay and intensity difference from the lunar surface and subsurface. It is important to fully understand electromagnetic wave propagation, scattering, and attenuation through the lunar media in order to retrieve information of lunar layering structure from weak nadir echoes of the subsurface, which is simultaneously interfered by strong off-nadir surface clutters. Based on the Kirchhoff approximation (KA) of rough surface scattering and the ray tracing of geometric optics, a numerical simulation of radar echoes from lunar layering structures is developed. According to the lunar surface feature, the topography of mare and highland surfaces is numerically generated, and the triangulated network is employed to make digital elevations of the whole lunar surface. Scattering from the lunar surface and subsurface is numerically calculated using KA approach. Radar echoes and its range images are numerically simulated, and their dependence on the parameters of lunar layering interfaces is discussed. The approach of this paper can also be utilized to investigate subsurface structures in Mars and other planetary exploration.展开更多
基金Russian Foundation for Basic Research(No.12-02-90425)
文摘In this report the combined method of correlation radar signal(RS)processing based on the theory of atomic functions(AF)is examined.Examples of using of new Kravchenko probability weight functions(WF)designs are presented.Quality functional to estimate accuracy and efficiency of RS processing for concrete physical models is constructed.It is shown that the proposed approach significantly improves the quality of the coherent analysis of RS.
文摘The development of microwave sensors in recent two years in China are in troduced with an emphasis on spaceborne sensors without the applications in cluded. The microwave sensors as the main payloads to be boarded on the future operational satellites, such as FY-3 meteorological satellites and HY-2 marine satellite are introduced with much in detail. Besides these, four new sensors are outlined, i.e. the imaging radar altimeter,synthetic aperture radiometer, and polarimetric radiometer. Two recently conducted flight experiment campaigns are also introduced with results shown.
文摘HF (high frequency) radar sounder technology has been developed for several missions of Mars surface/subsurface exploration. This paper presents a model of rough surface and stratified sub-surfaces to describe the multi-layer structure of Mars polar deposits. Based on numerical simulation of radar echoes from rough surface/stratified interfaces, an inversion approach is developed to obtain the parameters of Polar Layered Deposits, i.e. layers thickness and dielectric constants. As a validation example, the SHARAD radar sounder data of the Promethei Lingula of Mars South Polar region is adopted for parameters inversion. The result of stratification is also analyzed and compared with the optical photo of the deep cliff of Chasma Australe canyon. Dielectric inversions show that the deposit media are not uniform, and the dielectric constants of the Promethei Lingula surfaces are large, and become reduced around the depth of 20 m - 30 m, below where most of the deposits are nearly pure ice, except a few thin layers with a lot of dust.
基金supported by National Natural Science Foundation of China (Grant Nos. 60971091, 40637033)the State Key Laboratory of Remote Sensing Science (Grant No. 2009KFJJ011)
文摘Space-borne high frequency (HF) radar sounder is an effective tool for investigation of lunar subsurface structure in lunar exploration. The primary strategy of radar sounder technology for subsurface structure detection is utilization of the nadir echoes time delay and intensity difference from the lunar surface and subsurface. It is important to fully understand electromagnetic wave propagation, scattering, and attenuation through the lunar media in order to retrieve information of lunar layering structure from weak nadir echoes of the subsurface, which is simultaneously interfered by strong off-nadir surface clutters. Based on the Kirchhoff approximation (KA) of rough surface scattering and the ray tracing of geometric optics, a numerical simulation of radar echoes from lunar layering structures is developed. According to the lunar surface feature, the topography of mare and highland surfaces is numerically generated, and the triangulated network is employed to make digital elevations of the whole lunar surface. Scattering from the lunar surface and subsurface is numerically calculated using KA approach. Radar echoes and its range images are numerically simulated, and their dependence on the parameters of lunar layering interfaces is discussed. The approach of this paper can also be utilized to investigate subsurface structures in Mars and other planetary exploration.