This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet ...This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet the requirements for cloud remote sensing over the Tibetan Plateau. Specifically, the design of the three operational modes of the radar(i.e., boundary mode M1, cirrus mode M2, and precipitation mode M3) is introduced. Also, a cloud radar data merging algorithm for the three modes is proposed. Using one month's continuous measurements during summertime at Naqu on the Tibetan Plateau,we analyzed the consistency between the cloud radar measurements of the three modes. The number of occurrences of radar detections of hydrometeors and the percentage contributions of the different modes' data to the merged data were estimated.The performance of the merging algorithm was evaluated. The results indicated that the minimum detectable reflectivity for each mode was consistent with theoretical results. Merged data provided measurements with a minimum reflectivity of -35 dBZ at the height of 5 km, and obtained information above the height of 0.2 km. Measurements of radial velocity by the three operational modes agreed very well, and systematic errors in measurements of reflectivity were less than 2 dB. However,large discrepancies existed in the measurements of the linear depolarization ratio taken from the different operational modes.The percentage of radar detections of hydrometeors in mid- and high-level clouds increased by 60% through application of pulse compression techniques. In conclusion, the merged data are appropriate for cloud and precipitation studies over the Tibetan Plateau.展开更多
In this paper,a quantitative precipitation estimation based on the hydrometeor classification(HCA-QPE)algorithm was proposed for the first operational S band dual-polarization radar upgraded from the CINRAD/SA radar o...In this paper,a quantitative precipitation estimation based on the hydrometeor classification(HCA-QPE)algorithm was proposed for the first operational S band dual-polarization radar upgraded from the CINRAD/SA radar of China.The HCA-QPE algorithm,localized Colorado State University-Hydrometeor Identification of Rainfall(CSUHIDRO)algorithm,the Joint Polarization Experiment(JPOLE)algorithm,and the dynamic Z-R relationships based on variational correction QPE(DRVC-QPE)algorithm were evaluated with the rainfall events from March 1 to October 30,2017 in Guangdong Province.The results indicated that even though the HCA-QPE algorithm did not use the observed rainfall data for correction,its estimation accuracy was better than that of the DRVC-QPE algorithm when the rainfall rate was greater than 5 mm h-1;and the stronger the rainfall intensity,the greater the QPE improvement.Besides,the HCA-QPE algorithm worked better than the localized CSU-HIDRO and JPOLE algorithms.This study preliminarily evaluated the improved accuracy of QPE by a dual-polarization radar system modified from CINRAD-SA radar.展开更多
基金funded by the National Sciences Foundation of China(Grant No.91337103)the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201406001)
文摘This study concerns a Ka-band solid-state transmitter cloud radar, made in China, which can operate in three different work modes, with different pulse widths, and coherent and incoherent integration numbers, to meet the requirements for cloud remote sensing over the Tibetan Plateau. Specifically, the design of the three operational modes of the radar(i.e., boundary mode M1, cirrus mode M2, and precipitation mode M3) is introduced. Also, a cloud radar data merging algorithm for the three modes is proposed. Using one month's continuous measurements during summertime at Naqu on the Tibetan Plateau,we analyzed the consistency between the cloud radar measurements of the three modes. The number of occurrences of radar detections of hydrometeors and the percentage contributions of the different modes' data to the merged data were estimated.The performance of the merging algorithm was evaluated. The results indicated that the minimum detectable reflectivity for each mode was consistent with theoretical results. Merged data provided measurements with a minimum reflectivity of -35 dBZ at the height of 5 km, and obtained information above the height of 0.2 km. Measurements of radial velocity by the three operational modes agreed very well, and systematic errors in measurements of reflectivity were less than 2 dB. However,large discrepancies existed in the measurements of the linear depolarization ratio taken from the different operational modes.The percentage of radar detections of hydrometeors in mid- and high-level clouds increased by 60% through application of pulse compression techniques. In conclusion, the merged data are appropriate for cloud and precipitation studies over the Tibetan Plateau.
基金National Key Research and Development Program of China(2017YFC1404700,2018YFC1506905)Open Research Program of the State Key Laboratory of Severe Weather(2018LASW-B09,2018LASW-B08)+7 种基金Science and Technology Planning Project of Guangdong Province,China(2019B020208016,2018B020207012,2017B020244002)National Natural Science Foundation of China(41375038)Special Scientific Research Fund of Meteorological Public Welfare Profession of China(GHY201506006)2017-2019Meteorological Forecasting Key Technology Development Special Grant(YBGJXM(2017)02-05)Guangdong Science&Technology Plan Project(2015A020217008)Zhejiang Province Major Science and Technology Special Project(2017C03035)Scientific and Technological Research Projects of Guangdong Meteorological Service(GRMC2018M10)Natural Science Foundation of Guangdong Province(2018A030313218)
文摘In this paper,a quantitative precipitation estimation based on the hydrometeor classification(HCA-QPE)algorithm was proposed for the first operational S band dual-polarization radar upgraded from the CINRAD/SA radar of China.The HCA-QPE algorithm,localized Colorado State University-Hydrometeor Identification of Rainfall(CSUHIDRO)algorithm,the Joint Polarization Experiment(JPOLE)algorithm,and the dynamic Z-R relationships based on variational correction QPE(DRVC-QPE)algorithm were evaluated with the rainfall events from March 1 to October 30,2017 in Guangdong Province.The results indicated that even though the HCA-QPE algorithm did not use the observed rainfall data for correction,its estimation accuracy was better than that of the DRVC-QPE algorithm when the rainfall rate was greater than 5 mm h-1;and the stronger the rainfall intensity,the greater the QPE improvement.Besides,the HCA-QPE algorithm worked better than the localized CSU-HIDRO and JPOLE algorithms.This study preliminarily evaluated the improved accuracy of QPE by a dual-polarization radar system modified from CINRAD-SA radar.