A heat source model for radial friction welding was proposed, which was determined by friction pressure, friction coefficient, material properties and extrusion speed of material. A 3D model was established to analyze...A heat source model for radial friction welding was proposed, which was determined by friction pressure, friction coefficient, material properties and extrusion speed of material. A 3D model was established to analyze the continuous drive radial friction welding temperature field of 45 steel pipe. The influences of friction pressure, friction time and rotation speed on the temperature of the friction interface were analyzed. The results showed that the temperature on the friction interface rapidly rose to a peak temperature in initial friction stage and kept constant in the stable friction stage. Welding parameters of friction pressure, friction time and rotation speed had few influences on the peak temperature, while the increase of frlctlon pressure and rotation speed could shorten the time to reach the peak temperature.展开更多
A new radial friction welding technology of 30 mm shell's band is introduced.Bands are assembled to shell bodies without notches by using the process.The width of heat-affected zone(HAZ) is small,and the microstru...A new radial friction welding technology of 30 mm shell's band is introduced.Bands are assembled to shell bodies without notches by using the process.The width of heat-affected zone(HAZ) is small,and the microstructure on steel side is incomplete quenching while that on cooper side is grain refining.The shear-strength of joint exceeds 200 MPa.The result of firing test indicates that radial friction welding can satisfy the assembly requirements of shell bands.展开更多
针对现阶段圆柱滚子轴承摩擦力矩试验机测量载荷较小以及大径向载荷条件下测量精度不高的问题,基于平衡法研制了圆柱滚子轴承摩擦力矩试验机,试验机主体为卧式结构,最大载荷可施加至10 k N,可以在不同转速和润滑条件下测量圆柱滚子轴承...针对现阶段圆柱滚子轴承摩擦力矩试验机测量载荷较小以及大径向载荷条件下测量精度不高的问题,基于平衡法研制了圆柱滚子轴承摩擦力矩试验机,试验机主体为卧式结构,最大载荷可施加至10 k N,可以在不同转速和润滑条件下测量圆柱滚子轴承的摩擦力矩。基于试验分析了径向载荷对圆柱滚子轴承摩擦力矩的影响规律,结果表明圆柱滚子轴承摩擦力矩随径向载荷的增加逐渐增大,摩擦力矩测量值与理论计算值相差较小,验证了圆柱滚子轴承摩擦力矩试验机的实用性。展开更多
Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neura...Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neural network(NN) based terminal sliding mode control(TSMC) for WMRs where an augmented ground friction model is reported by which the uncertain friction can be estimated and compensated according to the required performance.In contrast to the existing friction models,the developed augmented ground friction model corresponds to actual fact because not only the effects associated with the mobile platform velocity but also the slippage related to the wheel slip rate are concerned simultaneously.Besides,the presented control approach can combine the merits of both TSMC and radial basis function(RBF) neural networks techniques,thereby providing numerous excellent performances for the closed-loop system,such as finite time convergence and faster friction estimation property.Simulation results validate the proposed friction model and robustness of controller;these research results will improve the autonomy and intelligence of WMRs,particularly when the mobile platform suffers from the sophisticated unstructured environment.展开更多
Temperature-dependent elastic viscoplastic material model was used for the numerical simulation of the friction stir welding process. The non-elastic response of the rate-dependent material in the large deformation pr...Temperature-dependent elastic viscoplastic material model was used for the numerical simulation of the friction stir welding process. The non-elastic response of the rate-dependent material in the large deformation problems was calculated by using the closest point algorithm. The numerical results show that the shape of the equivalent plastic strain looks like onion rings and the spacing of the rings is approximately equal to the forward movement of the tool in one rotation. The equivalent plastic strain is increased with the increase of viscosity coefficient due to the increase of friction stress in the pin-plate interface. The region which is influenced by the rotating tool is decreased with the decrease of viscosity coefficient. The radial and circumferential stresses in front of the pin are greater than the ones behind the pin. This difference can be reduced with the decrease of viscosity.展开更多
Since the mild-slope equation was derived by Berkhoff (1972),the researchers considered various mechanism to simplify and improve the equation,which has been widely used for coastal wave field calculation.Recently,s...Since the mild-slope equation was derived by Berkhoff (1972),the researchers considered various mechanism to simplify and improve the equation,which has been widely used for coastal wave field calculation.Recently,some scholars applied the mild-slope equation in simulating the tidal motion,which proves that the equation is capable to calculate the tide in actual terrain.But in their studies,they made a lot of simplifications,and did not consider the effects of Coriolis force and bottom friction on tidal wave.In this paper,the first-order linear mild-slope equations are deduced from Kirby mild-slope equation including wave and current interaction.Then,referring to the method of wave equations’ modification,the Coriolis force and bottom friction term are considered,and the effects of which have been performed with the radial sand ridges topography.Finally,the results show that the modified mild-slope equation can be used to simulate tidal motion,and the calculations agree well with the measurements,thus the applicability and validity of the mild-slope equation on tidal simulation are further proved.展开更多
This paper proposes a new method for data assimilation of the surface radial current observed by High Frequency ground wave radar and optimization of the bottom friction coefficient.In this method,the shallow water wa...This paper proposes a new method for data assimilation of the surface radial current observed by High Frequency ground wave radar and optimization of the bottom friction coefficient.In this method,the shallow water wave equation is introduced into the cost function of the multigrid three-dimensional variation data assimilation method as the weak constraint term,the surface current and the bottom friction coefficient are defined as the analytical variables,and the high spatiotemporal resolution surface radial flow observed by the high-frequency ground wave radar is used to optimize the surface current and bottom friction coefficient.This method can effectively consider the spatiotemporal correlation of radar data and extract multiscale information from surface radial flow data from long waves to short waves.Introducing the shallow water wave equation into the cost function as a weak constraint condition can adjust both the momentum and mass fields simultaneously to obtain more reasonable analysis information.The optimized bottom friction coefficient is introduced into the regional ocean numerical model to carry out numerical experiments.The test results show that the bottom friction coefficient obtained by this method can effectively improve the accuracy of the numerical simulation of sea surface height in the offshore area and reduce the simulation error.展开更多
The aim of this paper is two-dimensional magnetohydrodynamic viscous fluid bounded by infinite sheets to examine the Dufour and Soret effects on the (MHD) steady flow of an electrically conducting An incompressible...The aim of this paper is two-dimensional magnetohydrodynamic viscous fluid bounded by infinite sheets to examine the Dufour and Soret effects on the (MHD) steady flow of an electrically conducting An incompressible viscous fluid fills the porous space. The mathematical analysis is performed in the presence of viscous dissipation, Joule heating, and a first-order chemical reaction. With suitable transformations, the governing partial differential equations through momentum, energy, and concentration laws are transformed into ordinary differential equations. The resulting equations are solved by the homotopy analysis method (HAM). The convergence of the series solutions is ensured. The effects of the emerging parameters, the skin friction coefficient, the Nusselt number, and the Sherwood number are analyzed on the dimensionless velocities, temperature, and concentration fields.展开更多
基金This work was suooorted by National Natural Science Foundation of China (Grant No. 51075174/E050803 ).
文摘A heat source model for radial friction welding was proposed, which was determined by friction pressure, friction coefficient, material properties and extrusion speed of material. A 3D model was established to analyze the continuous drive radial friction welding temperature field of 45 steel pipe. The influences of friction pressure, friction time and rotation speed on the temperature of the friction interface were analyzed. The results showed that the temperature on the friction interface rapidly rose to a peak temperature in initial friction stage and kept constant in the stable friction stage. Welding parameters of friction pressure, friction time and rotation speed had few influences on the peak temperature, while the increase of frlctlon pressure and rotation speed could shorten the time to reach the peak temperature.
文摘A new radial friction welding technology of 30 mm shell's band is introduced.Bands are assembled to shell bodies without notches by using the process.The width of heat-affected zone(HAZ) is small,and the microstructure on steel side is incomplete quenching while that on cooper side is grain refining.The shear-strength of joint exceeds 200 MPa.The result of firing test indicates that radial friction welding can satisfy the assembly requirements of shell bands.
文摘针对现阶段圆柱滚子轴承摩擦力矩试验机测量载荷较小以及大径向载荷条件下测量精度不高的问题,基于平衡法研制了圆柱滚子轴承摩擦力矩试验机,试验机主体为卧式结构,最大载荷可施加至10 k N,可以在不同转速和润滑条件下测量圆柱滚子轴承的摩擦力矩。基于试验分析了径向载荷对圆柱滚子轴承摩擦力矩的影响规律,结果表明圆柱滚子轴承摩擦力矩随径向载荷的增加逐渐增大,摩擦力矩测量值与理论计算值相差较小,验证了圆柱滚子轴承摩擦力矩试验机的实用性。
基金supported by the National Natural Science Foundation of China(61573078,61573147)the International S&T Cooperation Program of China(2014DFB70120)the State Key Laboratory of Robotics and System(SKLRS2015ZD06)
文摘Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neural network(NN) based terminal sliding mode control(TSMC) for WMRs where an augmented ground friction model is reported by which the uncertain friction can be estimated and compensated according to the required performance.In contrast to the existing friction models,the developed augmented ground friction model corresponds to actual fact because not only the effects associated with the mobile platform velocity but also the slippage related to the wheel slip rate are concerned simultaneously.Besides,the presented control approach can combine the merits of both TSMC and radial basis function(RBF) neural networks techniques,thereby providing numerous excellent performances for the closed-loop system,such as finite time convergence and faster friction estimation property.Simulation results validate the proposed friction model and robustness of controller;these research results will improve the autonomy and intelligence of WMRs,particularly when the mobile platform suffers from the sophisticated unstructured environment.
基金Porjects(10225212 10421002+1 种基金 10302007) supported by the National Natural Science Foundation of China Project supported by the Program of Changjiang Scholars and the Innovative Research Team in University of China(PCSIRT) and Project(2005CB321704) supported by the National Basic Research Program of China
文摘Temperature-dependent elastic viscoplastic material model was used for the numerical simulation of the friction stir welding process. The non-elastic response of the rate-dependent material in the large deformation problems was calculated by using the closest point algorithm. The numerical results show that the shape of the equivalent plastic strain looks like onion rings and the spacing of the rings is approximately equal to the forward movement of the tool in one rotation. The equivalent plastic strain is increased with the increase of viscosity coefficient due to the increase of friction stress in the pin-plate interface. The region which is influenced by the rotating tool is decreased with the decrease of viscosity coefficient. The radial and circumferential stresses in front of the pin are greater than the ones behind the pin. This difference can be reduced with the decrease of viscosity.
基金The Ministry of Education Fundation for the Doctoral Program of Higher Education under contract No.200802940014the Natural Science Foundation of Hohai University under contract Nos 2008430511Ministry of Transport Open Fundation of Laboratry of port,waterway,sediment engineering
文摘Since the mild-slope equation was derived by Berkhoff (1972),the researchers considered various mechanism to simplify and improve the equation,which has been widely used for coastal wave field calculation.Recently,some scholars applied the mild-slope equation in simulating the tidal motion,which proves that the equation is capable to calculate the tide in actual terrain.But in their studies,they made a lot of simplifications,and did not consider the effects of Coriolis force and bottom friction on tidal wave.In this paper,the first-order linear mild-slope equations are deduced from Kirby mild-slope equation including wave and current interaction.Then,referring to the method of wave equations’ modification,the Coriolis force and bottom friction term are considered,and the effects of which have been performed with the radial sand ridges topography.Finally,the results show that the modified mild-slope equation can be used to simulate tidal motion,and the calculations agree well with the measurements,thus the applicability and validity of the mild-slope equation on tidal simulation are further proved.
基金supported by the National Natural Science Foundation of China (Nos. 41506039, 41776004, 41775100 and 41606039)the National Key Research and Development Program of China (No. 2016YFC1401800)+1 种基金the Fundamental Research Funds for the Central Universities (No. 2016B12514)the National Programme on Global Change and Air-Sea Interaction of China (No. GASI-IPO VAI-04)
文摘This paper proposes a new method for data assimilation of the surface radial current observed by High Frequency ground wave radar and optimization of the bottom friction coefficient.In this method,the shallow water wave equation is introduced into the cost function of the multigrid three-dimensional variation data assimilation method as the weak constraint term,the surface current and the bottom friction coefficient are defined as the analytical variables,and the high spatiotemporal resolution surface radial flow observed by the high-frequency ground wave radar is used to optimize the surface current and bottom friction coefficient.This method can effectively consider the spatiotemporal correlation of radar data and extract multiscale information from surface radial flow data from long waves to short waves.Introducing the shallow water wave equation into the cost function as a weak constraint condition can adjust both the momentum and mass fields simultaneously to obtain more reasonable analysis information.The optimized bottom friction coefficient is introduced into the regional ocean numerical model to carry out numerical experiments.The test results show that the bottom friction coefficient obtained by this method can effectively improve the accuracy of the numerical simulation of sea surface height in the offshore area and reduce the simulation error.
基金Project supported by the Deanship of Scientific Research (DSR) of King Abdulaziz University of Saudi Arabia (No. HiCi/40-3/1432H)
文摘The aim of this paper is two-dimensional magnetohydrodynamic viscous fluid bounded by infinite sheets to examine the Dufour and Soret effects on the (MHD) steady flow of an electrically conducting An incompressible viscous fluid fills the porous space. The mathematical analysis is performed in the presence of viscous dissipation, Joule heating, and a first-order chemical reaction. With suitable transformations, the governing partial differential equations through momentum, energy, and concentration laws are transformed into ordinary differential equations. The resulting equations are solved by the homotopy analysis method (HAM). The convergence of the series solutions is ensured. The effects of the emerging parameters, the skin friction coefficient, the Nusselt number, and the Sherwood number are analyzed on the dimensionless velocities, temperature, and concentration fields.