期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
Synchronization of chaos using radial basis functions neural networks 被引量:2
1
作者 Ren Haipeng Liu Ding 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期83-88,100,共7页
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst... The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method. 展开更多
关键词 Chaos synchronization radial basis function neural networks Model error Parameter perturbation Measurement noise.
下载PDF
Analytic design of information granulation-based fuzzy radial basis function neural networks with the aid of multiobjective particle swarm optimization 被引量:2
2
作者 Byoung-Jun Park Jeoung-Nae Choi +1 位作者 Wook-Dong Kim Sung-Kwun Oh 《International Journal of Intelligent Computing and Cybernetics》 EI 2012年第1期4-35,共32页
Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Partic... Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Particle Swarm Optimization(MOPSO).Design/methodology/approach–In fuzzy modeling,complexity,interpretability(or simplicity)as well as accuracy of the obtained model are essential design criteria.Since the performance of the IG-RBFNN model is directly affected by some parameters,such as the fuzzification coefficient used in the FCM,the number of rules and the orders of the polynomials in the consequent parts of the rules,the authors carry out both structural as well as parametric optimization of the network.A multi-objective Particle Swarm Optimization using Crowding Distance(MOPSO-CD)as well as O/WLS learning-based optimization are exploited to carry out the structural and parametric optimization of the model,respectively,while the optimization is of multiobjective character as it is aimed at the simultaneous minimization of complexity and maximization of accuracy.Findings–The performance of the proposed model is illustrated with the aid of three examples.The proposed optimization method leads to an accurate and highly interpretable fuzzy model.Originality/value–A MOPSO-CD as well as O/WLS learning-based optimization are exploited,respectively,to carry out the structural and parametric optimization of the model.As a result,the proposed methodology is interesting for designing an accurate and highly interpretable fuzzy model. 展开更多
关键词 Modelling Optimization techniques neural nets Design calculations Fuzzy c-means clustering Multi-objective particle swarm optimization Information granulation-based fuzzy radial basis function neural network Ordinary least squaresmethod Weighted least square method
原文传递
Radial Basis Function Neural Networks Based QSPR for the Prediction of log P
3
作者 姚小军 刘满仓 +3 位作者 张晓昀 张瑞生 胡之德 范波涛 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2002年第8期722-730,共9页
Quantitative structure property relationship (QSPR) method is used to study the correlation models between the structures of a set of diverse organic compounds and their log P . Molecular descriptors calculated fr... Quantitative structure property relationship (QSPR) method is used to study the correlation models between the structures of a set of diverse organic compounds and their log P . Molecular descriptors calculated from structure alone are used to describe the molecular structures. A subset of the calculated descriptors, selected using forward stepwise regression, is used in the QSPR models development. Multiple linear regression (MLR) and radial basis function neural networks (RBFNNs) are utilized to construct the linear and non linear correlation model, respectively. The optimal QSPR model developed is based on a 7 17 1 RBFNNs architecture using seven calculated molecular descriptors. The root mean square errors in predictions for the training, predicting and overall data sets are 0.284, 0.327 and 0.291 log P units, respectively. 展开更多
关键词 radial basis function neural network QSPR molecular descriptor log P
原文传递
Application of Near Infrared Diffuse Reflectance Spectroscopy with Radial Basis Function Neural Network to Determination of Rifampincin Isoniazid and Pyrazinamide Tablets 被引量:3
4
作者 DU Lin-na WU Li-hang +5 位作者 LU Jia-hui GUO Wei-liang MENG Qing-fan JIANG Chao-jun SHEN Si-le TENG Li-rong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第5期518-523,共6页
Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse r... Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems. 展开更多
关键词 Rifampicin isoniazid and pyrazinamide tablets NIR diffuse reflectance spectroscopy Partial least square Back-propagation neural network radial basis function neural network
下载PDF
Wear State Recognition of Drills Based on K-means Cluster and Radial Basis Function Neural Network 被引量:2
5
作者 Xu Yang 《International Journal of Automation and computing》 EI 2010年第3期271-276,共6页
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, d... Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective. 展开更多
关键词 Drill wear state recognition cutting torque signals wavelet packet decomposition (WPD) Welch spectrum energy K-means cluster radial basis function neural network
下载PDF
Adaptive integral dynamic surface control based on fully tuned radial basis function neural network 被引量:2
6
作者 Li Zhou Shumin Fei Changsheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1072-1078,共7页
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid... An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach. 展开更多
关键词 adaptive control integral dynamic surface control fully tuned radial basis function neural network.
下载PDF
Prediction of Parkinson’s Disease Using Improved Radial Basis Function Neural Network 被引量:1
7
作者 Rajalakshmi Shenbaga Moorthy P.Pabitha 《Computers, Materials & Continua》 SCIE EI 2021年第9期3101-3119,共19页
Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression.This paper contributes a novel analytic system for Parkinson’s Disease Prediction mecha... Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression.This paper contributes a novel analytic system for Parkinson’s Disease Prediction mechanism using Improved Radial Basis Function Neural Network(IRBFNN).Particle swarm optimization(PSO)with K-means is used to find the hidden neuron’s centers to improve the accuracy of IRBFNN.The performance of RBFNN is seriously affected by the centers of hidden neurons.Conventionally K-means was used to find the centers of hidden neurons.The problem of sensitiveness to the random initial centroid in K-means degrades the performance of RBFNN.Thus,a metaheuristic algorithm called PSO integrated with K-means alleviates initial random centroid and computes optimal centers for hidden neurons in IRBFNN.The IRBFNN uses Particle swarm optimization K-means to find the centers of hidden neurons and the PSO K-means was designed to evaluate the fitness measures such as Intracluster distance and Intercluster distance.Experimentation have been performed on three Parkinson’s datasets obtained from the UCI repository.The proposed IRBFNN is compared with other variations of RBFNN,conventional machine learning algorithms and other Parkinson’s Disease prediction algorithms.The proposed IRBFNN achieves an accuracy of 98.73%,98.47%and 99.03%for three Parkinson’s datasets taken for experimentation.The experimental results show that IRBFNN maximizes the accuracy in predicting Parkinson’s disease with minimum root mean square error. 展开更多
关键词 Improved radial basis function neural network K-MEANS particle swarm optimization
下载PDF
High-precision chaotic radial basis function neural network model:Data forecasting for the Earth electromagnetic signal before a strong earthquake
8
作者 Guocheng Hao Juan Guo +2 位作者 Wei Zhang Yunliang Chen David AYuen 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期364-373,共10页
The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters... The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters.Forecasting of the underlying intensity trend plays an important role in the analysis of data and disaster monitoring.Combining chaos theory and the radial basis function neural network,this paper proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal.The main strategy of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neural network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data.In verification experiments,we employ the 3 and 6 days’data of two channels as training samples to forecast the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively.According to the forecasting results and absolute error results,the chaotic radial basis function forecasting model can fit the fluctuation trend of the actual signal strength,effectively reduce the forecasting error compared with the traditional radial basis function model.Hence,this network may be useful for studying the characteristics of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can contribute to the electromagnetic anomaly monitoring before the earthquake. 展开更多
关键词 Earth’s natural pulse electromagnetic field Chaos theory radial basis function neural network Forecasting model
下载PDF
Rough set and radial basis function neural network based insulation data mining fault diagnosis for power transformer
9
作者 董立新 肖登明 刘奕路 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第2期263-268,共6页
Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input... Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing. 展开更多
关键词 rough set (RS) radial basis function neural network (RBFNN) data mining fault diagnosis
下载PDF
Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms
10
作者 Shehab Abdulhabib Alzaeemi Kim Gaik Tay +2 位作者 Audrey Huong Saratha Sathasivam Majid Khan bin Majahar Ali 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1163-1184,共22页
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor... Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT. 展开更多
关键词 Satisfiability logic programming symbolic radial basis function neural network evolutionary programming algorithm genetic algorithm evolution strategy algorithm differential evolution algorithm
下载PDF
A Novel Radial Basis Function Neural Network Approach for ECG Signal Classification
11
作者 S.Sathishkumar R.Devi Priya 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期129-148,共20页
ions in the ECG signal.The cardiologist and medical specialistfind numerous difficulties in the process of traditional approaches.The specified restrictions are eliminated in the proposed classifier.The fundamental ai... ions in the ECG signal.The cardiologist and medical specialistfind numerous difficulties in the process of traditional approaches.The specified restrictions are eliminated in the proposed classifier.The fundamental aim of this work is tofind the R-R interval.To analyze the blockage,different approaches are implemented,which make the computation as facile with high accuracy.The information are recovered from the MIT-BIH dataset.The retrieved data contain normal and pathological ECG signals.To obtain a noiseless signal,Gaborfilter is employed and to compute the amplitude of the signal,DCT-DOST(Discrete cosine based Discrete orthogonal stock well transform)is implemented.The amplitude is computed to detect the cardiac abnormality.The R peak of the underlying ECG signal is noted and the segment length of the ECG cycle is identified.The Genetic algorithm(GA)retrieves the primary highlights and the classifier integrates the data with the chosen attributes to optimize the identification.In addition,the GA helps in performing hereditary calculations to reduce the problem of multi-target enhancement.Finally,the RBFNN(Radial basis function neural network)is applied,which diminishes the local minima present in the signal.It shows enhancement in characterizing the ordinary and anomalous ECG signals. 展开更多
关键词 Electrocardiogram signal gaborfilter discrete cosine based discrete orthogonal stock well transform genetic algorithm radial basis function neural network
下载PDF
Adaptive proportional integral differential control based on radial basis function neural network identification of a two-degree-of-freedom closed-chain robot
12
作者 陈正洪 王勇 李艳 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期457-461,共5页
A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper pr... A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method. 展开更多
关键词 closed-chain robot radial basis function (RBF) neural network adaptive proportional integral differential (PID) control identification neural network
下载PDF
Nonlinear Identification and Control of Laser Welding Based on RBF Neural Networks
13
作者 Hongfei Wei Hui Zhao +1 位作者 Xinlong Shi Shuang Liang 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期51-65,共15页
A laser beam is a heat source with a high energy density;this technol-ogy has been rapidly developed and applied in thefield of welding owing to its potential advantages,and supplements traditional welding techniques.A... A laser beam is a heat source with a high energy density;this technol-ogy has been rapidly developed and applied in thefield of welding owing to its potential advantages,and supplements traditional welding techniques.An in-depth analysis of its operating process could establish a good foundation for its application in China.It is widely understood that the welding process is a highly nonlinear and multi-variable coupling process;it comprises a significant number of complex processes with random uncertain factors.Because of their nonlinear mapping and self-learning characteristics,artificial neural networks(ANNs)have certain advantages in comparison to traditional methods in thefield of welding.Laser welding is a nonlinear dynamic process;these processes still pose a major challenge in thefield of control.Therefore,establishing a stable model is a pre-requisite for achieving accurate control.In this study,the identification and con-trol of radial basis function neural networks in laser welding processes and self-tuning PID control methods are proposed to improve weld quality.Using a MATLAB simulation,it is shown that the proposed method can obtain a good description of the level of nonlinear dynamic control,and that the algorithm iden-tification accuracy is high,practical,and effective.Using this method,the weld width quickly reaches the expected value and the system remains stable,with good robustness.Further,it ensures the stability and dynamic performance of the welding process and improves weld quality. 展开更多
关键词 Laser welding radial basis function neural networks SELF-TUNING NONLINEAR IDENTIFICATION
下载PDF
A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak 被引量:10
14
作者 A.Sayadi M.Monjezi +1 位作者 N.Talebi Manoj Khandelwal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第4期318-324,共7页
In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and... In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and economically successful outcome.Since many parameters affect the blasting results in a complicated mechanism,employment of robust methods such as artificial neural network may be very useful.In this regard,this paper attends to simultaneous prediction of rock fragmentation and backbreak in the blasting operation of Tehran Cement Company limestone mines in Iran.Back propagation neural network(BPNN) and radial basis function neural network(RBFNN) are adopted for the simulation.Also,regression analysis is performed between independent and dependent variables.For the BPNN modeling,a network with architecture 6-10-2 is found to be optimum whereas for the RBFNN,architecture 636-2 with spread factor of 0.79 provides maximum prediction aptitude.Performance comparison of the developed models is fulfilled using value account for(VAF),root mean square error(RMSE),determination coefficient(R2) and maximum relative error(MRE).As such,it is observed that the BPNN model is the most preferable model providing maximum accuracy and minimum error.Also,sensitivity analysis shows that inputs burden and stemming are the most effective parameters on the outputs fragmentation and backbreak,respectively.On the other hand,for both of the outputs,specific charge is the least effective parameter. 展开更多
关键词 Rock fragmentation Backbreak Artificial neural network Back propagation radial basis function
下载PDF
Nonlinear modeling based on RBF neural networks identification and adaptive fuzzy control of DMFC stack 被引量:1
15
作者 苗青 曹广益 朱新坚 《Journal of Shanghai University(English Edition)》 CAS 2006年第4期346-351,共6页
The temperature models of anode and cathode of direct methanol fuel cell (DMFC) stack were established by using radial basis function (RBF) neural networks identification technique to deal with the modeling and co... The temperature models of anode and cathode of direct methanol fuel cell (DMFC) stack were established by using radial basis function (RBF) neural networks identification technique to deal with the modeling and control problem of DMFC stack. An adaptive fuzzy neural networks temperature controller was designed based on the identification models established, and parameters of the controller were regulated by novel back propagation (BP) algorithm. Simulation results show that the RBF neural networks identification modeling method is correct, effective and the models established have good accuracy. Moreover, performance of the adaptive fuzzy neural networks temperature controller designed is superior. 展开更多
关键词 direct methanol fuel cell (DMFC) stack radial basis function (RBF) neural networks contxoller.
下载PDF
A nonlinear PCA algorithm based on RBF neural networks 被引量:1
16
作者 杨斌 朱仲英 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第1期101-104,共4页
Traditional PCA is a linear method, but most engineering problems are nonlinear. Using the linear PCA in nonlinear problems may bring distorted and misleading results. Therefore, an approach of nonlinear principal com... Traditional PCA is a linear method, but most engineering problems are nonlinear. Using the linear PCA in nonlinear problems may bring distorted and misleading results. Therefore, an approach of nonlinear principal component analysis (NLPCA) using radial basis function (RBF) neural network is developed in this paper. The orthogonal least squares (OLS) algorithm is used to train the RBF neural network. This method improves the training speed and prevents it from being trapped in local optimization. Results of two experiments show that this NLPCA method can effectively capture nonlinear correlation of nonlinear complex data, and improve the precision of the classification and the prediction. 展开更多
关键词 Principal Component Analysis (PCA) Nonlinear PCA (NLPCA) radial basis function (RBF) neural network Orthogonal Least Squares (OLS)
下载PDF
A Model to Predict Rolling Force of Finishing Stands with RBF Neural Networks
17
作者 应宇圣 王景成 陈春召 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第3期256-259,共4页
In view of intrinsic imperfection of traditional models of rolling force, in ord er to improve the prediction accuracy of rolling force, a new method combining radial basis function(RBF) neural networks with tradition... In view of intrinsic imperfection of traditional models of rolling force, in ord er to improve the prediction accuracy of rolling force, a new method combining radial basis function(RBF) neural networks with traditional models to predict rolling f orce was proposed. The off-line simulation indicates that the predicted results are much more accurate than that with traditional models. 展开更多
关键词 radial basis function(RBF) neural networks prediction of rolling force finishing rolling
下载PDF
Identification of crack in a structural member using improved radial basis function(IRBF)neural networks 被引量:1
18
作者 Rajendra Machavaram Shankar Krishnapillai 《International Journal of Intelligent Computing and Cybernetics》 EI 2013年第2期182-211,共30页
Purpose–The purpose of this paper is to provide an effective and simple technique to structural damage identification,particularly to identify a crack in a structure.Artificial neural networks approach is an alternat... Purpose–The purpose of this paper is to provide an effective and simple technique to structural damage identification,particularly to identify a crack in a structure.Artificial neural networks approach is an alternative to identify the extent and location of the damage over the classical methods.Radial basis function(RBF)networks are good at function mapping and generalization ability among the various neural network approaches.RBF neural networks are chosen for the present study of crack identification.Design/methodology/approach–Analyzing the vibration response of a structure is an effective way to monitor its health and even to detect the damage.A novel two-stage improved radial basis function(IRBF)neural network methodology with conventional RBF in the first stage and a reduced search space moving technique in the second stage is proposed to identify the crack in a cantilever beam structure in the frequency domain.Latin hypercube sampling(LHS)technique is used in both stages to sample the frequency modal patterns to train the proposed network.Study is also conducted with and without addition of 5%white noise to the input patterns to simulate the experimental errors.Findings–The results show a significant improvement in identifying the location and magnitude of a crack by the proposed IRBF method,in comparison with conventional RBF method and other classical methods.In case of crack location in a beam,the average identification error over 12 test cases was 0.69 per cent by IRBF network compared to 4.88 per cent by conventional RBF.Similar improvements are reported when compared to hybrid CPN BPN networks.It also requires much less computational effort as compared to other hybrid neural network approaches and classical methods.Originality/value–The proposed novel IRBF crack identification technique is unique in originality and not reported elsewhere.It can identify the crack location and crack depth with very good accuracy,less computational effort and ease of implementation. 展开更多
关键词 Structures Stress(materials) Mechanical behaviour of materials BEAMS Structural members Crack identification Structural damage Frequency domain Latin hypercube sampling Improved radial basis function neural networks Reduced search space moving technique
原文传递
A neural network solution of first-passage problems
19
作者 Jiamin QIAN Lincong CHEN J.Q.SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第11期2023-2036,共14页
This paper proposes a novel method for solving the first-passage time probability problem of nonlinear stochastic dynamic systems.The safe domain boundary is exactly imposed into the radial basis function neural netwo... This paper proposes a novel method for solving the first-passage time probability problem of nonlinear stochastic dynamic systems.The safe domain boundary is exactly imposed into the radial basis function neural network(RBF-NN)architecture such that the solution is an admissible function of the boundary-value problem.In this way,the neural network solution can automatically satisfy the safe domain boundaries and no longer requires adding the corresponding loss terms,thus efficiently handling structure failure problems defined by various safe domain boundaries.The effectiveness of the proposed method is demonstrated through three nonlinear stochastic examples defined by different safe domains,and the results are validated against the extensive Monte Carlo simulations(MCSs). 展开更多
关键词 first-passage time probability nonlinear stochastic dynamic system radial basis function neural network(RBF-NN) safe domain boundary Monte Carlo simulation(MCS)
下载PDF
INTERNET TRAFFIC DATA FLOW FORECAST BY RBF NEURAL NETWORK BASED ON PHASE SPACE RECONSTRUCTION 被引量:4
20
作者 陆锦军 王执铨 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期316-322,共7页
Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a n... Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy. 展开更多
关键词 chaos theory phase space reeonstruction Lyapunov exponent tnternet data flow radial basis function neural network
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部