BACKGROUND This case report addresses the dearth of effective therapeutic interventions for central nervous system metastases in patients with HER2-negative breast cancer.It presents a unique case of a woman with estr...BACKGROUND This case report addresses the dearth of effective therapeutic interventions for central nervous system metastases in patients with HER2-negative breast cancer.It presents a unique case of a woman with estrogen receptor-positive,HER2-negative breast cancer who developed brain metastasis.The report highlights her initial favorable response to abemaciclib and letrozole therapy prior to the discon-tinuation due to drug-induced lung damage(DILD).CASE SUMMARY In this comprehensive case summary,we present the clinical course of a woman in her 60s,who 11 years following primary breast cancer surgery,was diagnosed with multiple brain metastases.As a third-line systemic therapy,she underwent treatment with abemaciclib and letrozole.This treatment approach yielded a near-partial response in her metastatic brain lesions.However,abemaciclib adminis-tration ceased due to the emergence of DILD,as confirmed by a computed tomography scan.The DILD improved after 1 mo of cessation.Despite ongoing therapeutic efforts,the patient’s condition progressively deteriorated,ultimately resulting in death due to progression of the brain metastases.CONCLUSION This case underscores the challenge of managing adverse events in responsive brain metastasis patients,given the scarcity of therapeutic options.展开更多
The aim in this study is to examine the effect of tirapazamine (TPZ) and mild temperature hyperthermia (MTH) on the repair of radiation-induced damage in pimonidazole-unlabeled quiescent (Q) tumor cells. Labeling of p...The aim in this study is to examine the effect of tirapazamine (TPZ) and mild temperature hyperthermia (MTH) on the repair of radiation-induced damage in pimonidazole-unlabeled quiescent (Q) tumor cells. Labeling of proliferating (P) cells in C57BL/6J mice bearing EL4 tumors was achieved by continuous administration of 5-bromo-2-deoxyuridine (BrdU). Tumors were irradiated with γ-rays at 1 h after the administration of pimonidazole followed by TPZ treatment or MTH. Twenty-four hours later, assessment of the responses of Q and total (= P + Q) cells were based on the frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of the pimonidazole-unlabeled tumor cell fractions was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. With γ-rays only, the pimonidazole-unlabeled cell fraction showed significantly enhanced radio-sensitivity compared with the whole cell fraction more remarkably in Q cells than total cells. However, a significantly greater decrease in radio-sensitivity in the pimonidazole-unlabeled than the whole cell fraction, evaluated using a delayed assay, was more clearly observed in Q cells than total cells. Post-irradiation MTH more remarkably repressed the decrease in radio-sensitivity in the Q cell than the total cells. Post-irradiation TPZ administration produced a large radio-sensitizing effect on both total and Q cells, especially on Q cells. On the other hand, in pimonidazole-unlabeled cell fractions in both total and Q cells, TPZ suppressed the reduction in sensitivity due to delayed assay much more efficiently than MTH, whereas no radio-sensitizing effect was produced. Not only through suppressing the recovery from radiation-induced damage but also through radio-sensitizing effect, post-irradiation TPZ administration is very useful for repressing the increase in the difference in radio-sensitivity due to the delayed assay not only between total and Q tumor cells but also between the pimonidazole-unlabeled and the whole cell fractions within the total and Q tumor cells.展开更多
Radiation-induced lung fibrosis(RILF) is a common side effect of thoracic irradiation therapy and leads to high mortality rates after cancer treatment. Radiation injury induces inflammatory M1 macrophage polarization ...Radiation-induced lung fibrosis(RILF) is a common side effect of thoracic irradiation therapy and leads to high mortality rates after cancer treatment. Radiation injury induces inflammatory M1 macrophage polarization leading to radiation pneumonitis, the first stage of RILF progression. Fibrosis occurs due to the transition of M1 macrophages to the anti-inflammatory pro-fibrotic M2 phenotype, and the resulting imbalance of macrophage regulated inflammatory signaling. Non-coding RNA signaling has been shown to play a large role in the regulation of the M2 mediated signaling pathways that are associated with the development and progression of fibrosis. While many studies show the link between M2 macrophages and fibrosis, there are only a few that explore their distinct role and the regulation of their signaling by non-coding RNA in RILF. In this review we summarize the current body of knowledge describing the roles of M2 macrophages in RILF, with an emphasis on the expression and functions of non-coding RNAs.展开更多
Objective Our study aimed to analyze the expression of miR-564 and TGF-β1 in cancer tissues and the serum of patients with radiation-induced lung injury,and to investigate the relationship between them and radiation-...Objective Our study aimed to analyze the expression of miR-564 and TGF-β1 in cancer tissues and the serum of patients with radiation-induced lung injury,and to investigate the relationship between them and radiation-induced lung injury.Methods In situ hybridization and real-time fluorescence quantitative method were used to detect the expression of miR-564.Additionally,immunohistochemistry and enzyme-linked immunosorbent assay(ELISA)were performed to detect the expression of TGF-β1.Results The overall incidence of acute radiation pneumonia was 55.9%(100/179).The incidence of≥grade 2 radioactive pneumonia was 24.0%(43/179)and that of grade 1 was 31.8%(57/179).The expression of miR-564 in grade≥2 was slightly higher than that in patients without or with grade 1,but there was no statistical difference(P=0.86).The serum level and ratio of miR-564 in patients with grade≥2 were significantly higher than those without or with grade 1(P=0.005,P=0.025,respectively).The expression of TGF-β1 in grade≥2 was significantly higher than that of patients without or with grade 1(P=0.017).The serum levels of TGF-β1 in grade≥2 were significantly higher than those in patients without or with grade 1(P=0.038).Although the ratio of TGF-β1 in radiation pneumonia of grade≥2 was significantly higher than that of without or with grade 1,there was no significant difference(P=0.24).Moreover,patients with higher expression of miR-564 and lower expression of TGF-β1 had better prognosis.Conclusion MiR-564 and TGF-β1 are predictors of radiation-induced lung injury.Monitoring its changing trend can improve the accuracy of predicting radiation-induced lung injury.The levels and ratio of serum miR-564 and TGF-β1 in patients with radiation-induced lung injury are related to the severity of radiationinduced lung injury.展开更多
The new coronavirus,severe acute respiratory syndrome coronavirus-2(SARSCoV-2),which emerged in December 2019 in Wuhan,China,has reached worldwide pandemic proportions,causing coronavirus disease 2019(COVID-19).The cl...The new coronavirus,severe acute respiratory syndrome coronavirus-2(SARSCoV-2),which emerged in December 2019 in Wuhan,China,has reached worldwide pandemic proportions,causing coronavirus disease 2019(COVID-19).The clinical manifestations of COVID-19 vary from an asymptomatic disease course to clinical symptoms of acute respiratory distress syndrome and severe pneumonia.The lungs are the primary organ affected by SARS-CoV-2,with a very slow turnover for renewal.SARS-CoV-2 enters the lungs via angiotensinconverting enzyme 2 receptors and induces an immune response with the accumulation of immunocompetent cells,causing a cytokine storm,which leads to target organ injury and subsequent dysfunction.To date,there is no effective antiviral therapy for COVID-19 patients,and therapeutic strategies are based on experience treating previously recognized coronaviruses.In search of new treatment modalities of COVID-19,cell-based therapy with mesenchymal stem cells(MSCs)and/or their secretome,such as soluble bioactive factors and extracellular vesicles,is considered supportive therapy for critically ill patients.Multipotent MSCs are able to differentiate into different types of cells of mesenchymal origin,including alveolar epithelial cells,lung epithelial cells,and vascular endothelial cells,which are severely damaged in the course of COVID-19 disease.Moreover,MSCs secrete a variety of bioactive factors that can be applied for respiratory tract regeneration in COVID-19 patients thanks to their trophic,anti-inflammatory,immunomodulatory,anti-apoptotic,pro-regenerative,and proangiogenic properties.展开更多
Aim: Recently, there is an increased average of developing cancers. Though, the chemotherapeutic-treatment is unfavorable during pregnancy due to its harmful effects on developing fetuses, physicians have two ways to ...Aim: Recently, there is an increased average of developing cancers. Though, the chemotherapeutic-treatment is unfavorable during pregnancy due to its harmful effects on developing fetuses, physicians have two ways to minimize these effects either by termination of the pregnancy or minimizing its side effects. The present work aimed to illustrate the susceptibility of cardiac, lung and dorsal aorta function to the widely applicable drugs doxorubicin and cisplatin as well as 5-flurouracil. Materials and Methods: Mother albino rats were arranged into four-groups (control, doxorubicin, cisplatin and 5-flurouracil-treated groups). Each pregnant rat received intraperitoneal administration of 0.2 mg/kg body weight at 10th and 14th day of gestation and sacrificed at parturition (two doses). At parturition, serum of mother rats used to assess troponin I, heat shock protein 70, 8-hydroxydeoxyguanosine, vascular endothelial growth factor and adhesion molecules (ICAM-1 & VCAM-1). Isoenzyme electrophoresis of alkaline and acid phosphatases, glucose-6-phosphate dehydrogenase and lactic dehydrogenase were estimated in serum, myocardium and dorsal aorta of mother rats. The myocardium and lung were processed for histopathological investigations for both mothers and their offspring. Single strand (comet assay) and double strand DNA damage were carried out in heart and dorsal aorta of mother rats. Results: The present finding revealed that there are detected alterations of myocardial markers and lung amino acid metabolism as well as disruption of myocardial isoenzymes. DNA damage of myocardium and dorsal aorta were observed. Conclusions: The authors concluded that the metabolic activity of heart and lung is highly susceptible to doxorubicin and cisplatin treatment compared to 5-flurouracil and the therapeutic doses must be degraded.展开更多
Objective:To explore the effect of oleuropein on sepsis-induced acute lung injury(ALI)in vitro and in vivo and investigate the underlying mechanism.Methods:In an lipopolysaccharide(LPS)-mediated cell model of sepsis-i...Objective:To explore the effect of oleuropein on sepsis-induced acute lung injury(ALI)in vitro and in vivo and investigate the underlying mechanism.Methods:In an lipopolysaccharide(LPS)-mediated cell model of sepsis-induced ALI and a cecal ligation and puncture-induced mouse model of septic ALI,CCK-8 assay and flow cytometry analysis were used to detect cell activity and apoptosis.ELISA and relevant assay kits were used to measure the levels of inflammatory cytokines and oxidative stress,respectively.Western blot was applied to determine the expression of apoptosis-and AMP-activated protein kinase(AMPK)/nuclear factor erythroid 2-related factor-2(Nrf-2)/heme oxygenase-1(HO-1)signaling-associated proteins.JC-1 staining,adenosine triphosphate(ATP)assay kit,and MitoSOX Red assays were performed to detect mitochondrial membrane potential,ATP content,and mitochondrial ROS formation,respectively.Moreover,lung injury was evaluated by measuring lung morphological alternations,lung wet-to-dry ratio,myeloperoxidase content,and total protein concentration.Results:Oleuropein reduced inflammatory reaction,oxidative damage,and apoptosis,and ameliorated mitochondrial dysfunction in LPS-exposed BEAS-2B cells and mice with septic ALI.Besides,oleuropein activated the AMPK/Nrf-2/HO-1 signaling pathway.However,these effects of oleuropein were abrogated by an AMPK inhibitor compound C.Conclusions:Oleuropein can protect against sepsis-induced ALI in vitro and in vivo by activating the AMPK/Nrf-2/HO-1 signaling,which might be a potential therapeutic agent for the treatment of sepsis-induced ALI.展开更多
Objective: To evaluate the hydroxypiperquin phosphate (HPQP) as a modifier of radiation-induced injury in human and rat lungs. Methods: Sixty-five patients with lung cancer treated with conventional radiotherapy were ...Objective: To evaluate the hydroxypiperquin phosphate (HPQP) as a modifier of radiation-induced injury in human and rat lungs. Methods: Sixty-five patients with lung cancer treated with conventional radiotherapy were divided into 2 groups randomly: Thirty cases were treated with HPQP and the others were in a control group. The changes of X - ray manifestation before, after and during taking drug were compared. An animal model of radiation-induced fibrosis of lungs was also established. Hydroxyproling (HP) content in lung tissue and the pathological changes in rat lungs were checked with microscope and electron microscope after 4 months and 6 months respectively. Results: The changes of lung X-ray manifestation in treatment group were much lighter than that in control group. The HP content and the change of pathology in the lungs of those rats with HPQP treatment were obviously less than that in control group. Conclusion: HPQP plays an important role in prevention and treatment of radiation-induced injury in lungs.展开更多
Novel coronavirus infection not only damages lung function,but also causes myocardial injury,elevated myocardial enzymes and heart failure,especially for patients with basic heart diseases who develop COVID-19,the fir...Novel coronavirus infection not only damages lung function,but also causes myocardial injury,elevated myocardial enzymes and heart failure,especially for patients with basic heart diseases who develop COVID-19,the first consideration should be the protection of cardiac function.Based on the theory of intermingled phlegm,blood stasis and toxin of heart disease put forward by Master Lei Zhongyi,the dialectical treatment thinking of COVID-19 patients from the concept of damage of phlegm,blood stasis and toxin to the heart were discussed.During the diagnosis,critical stage and recovery period of COVID-19,expectorant and blood-activating agents,heat and detoxification agents can be added to promote lung and asthma,free Bizheng and remove blood stasis,calm the heart and calm the mind,and promote the recovery of cardiopulmonary functions.展开更多
Irradiation makes structural materials of nuclear reactors degraded and failed.However,the damage process of materials induced by irradiation is not fully elucidated,mostly because the charged particles only bombarded...Irradiation makes structural materials of nuclear reactors degraded and failed.However,the damage process of materials induced by irradiation is not fully elucidated,mostly because the charged particles only bombarded the surface of the materials(within a few microns).In this work,we investigated the effects of surface irradiation on the indirect irradiation region of the(Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide(HEO)films in detail by plasma surface interaction.The results show that the damage induced by surface irradiation significantly extends to the indirect irradiation region of HEO film where the helium bubbles,dislocations,phase transformation,and the nickel oxide segregation were observed.展开更多
文摘BACKGROUND This case report addresses the dearth of effective therapeutic interventions for central nervous system metastases in patients with HER2-negative breast cancer.It presents a unique case of a woman with estrogen receptor-positive,HER2-negative breast cancer who developed brain metastasis.The report highlights her initial favorable response to abemaciclib and letrozole therapy prior to the discon-tinuation due to drug-induced lung damage(DILD).CASE SUMMARY In this comprehensive case summary,we present the clinical course of a woman in her 60s,who 11 years following primary breast cancer surgery,was diagnosed with multiple brain metastases.As a third-line systemic therapy,she underwent treatment with abemaciclib and letrozole.This treatment approach yielded a near-partial response in her metastatic brain lesions.However,abemaciclib adminis-tration ceased due to the emergence of DILD,as confirmed by a computed tomography scan.The DILD improved after 1 mo of cessation.Despite ongoing therapeutic efforts,the patient’s condition progressively deteriorated,ultimately resulting in death due to progression of the brain metastases.CONCLUSION This case underscores the challenge of managing adverse events in responsive brain metastasis patients,given the scarcity of therapeutic options.
文摘The aim in this study is to examine the effect of tirapazamine (TPZ) and mild temperature hyperthermia (MTH) on the repair of radiation-induced damage in pimonidazole-unlabeled quiescent (Q) tumor cells. Labeling of proliferating (P) cells in C57BL/6J mice bearing EL4 tumors was achieved by continuous administration of 5-bromo-2-deoxyuridine (BrdU). Tumors were irradiated with γ-rays at 1 h after the administration of pimonidazole followed by TPZ treatment or MTH. Twenty-four hours later, assessment of the responses of Q and total (= P + Q) cells were based on the frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of the pimonidazole-unlabeled tumor cell fractions was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. With γ-rays only, the pimonidazole-unlabeled cell fraction showed significantly enhanced radio-sensitivity compared with the whole cell fraction more remarkably in Q cells than total cells. However, a significantly greater decrease in radio-sensitivity in the pimonidazole-unlabeled than the whole cell fraction, evaluated using a delayed assay, was more clearly observed in Q cells than total cells. Post-irradiation MTH more remarkably repressed the decrease in radio-sensitivity in the Q cell than the total cells. Post-irradiation TPZ administration produced a large radio-sensitizing effect on both total and Q cells, especially on Q cells. On the other hand, in pimonidazole-unlabeled cell fractions in both total and Q cells, TPZ suppressed the reduction in sensitivity due to delayed assay much more efficiently than MTH, whereas no radio-sensitizing effect was produced. Not only through suppressing the recovery from radiation-induced damage but also through radio-sensitizing effect, post-irradiation TPZ administration is very useful for repressing the increase in the difference in radio-sensitivity due to the delayed assay not only between total and Q tumor cells but also between the pimonidazole-unlabeled and the whole cell fractions within the total and Q tumor cells.
文摘Radiation-induced lung fibrosis(RILF) is a common side effect of thoracic irradiation therapy and leads to high mortality rates after cancer treatment. Radiation injury induces inflammatory M1 macrophage polarization leading to radiation pneumonitis, the first stage of RILF progression. Fibrosis occurs due to the transition of M1 macrophages to the anti-inflammatory pro-fibrotic M2 phenotype, and the resulting imbalance of macrophage regulated inflammatory signaling. Non-coding RNA signaling has been shown to play a large role in the regulation of the M2 mediated signaling pathways that are associated with the development and progression of fibrosis. While many studies show the link between M2 macrophages and fibrosis, there are only a few that explore their distinct role and the regulation of their signaling by non-coding RNA in RILF. In this review we summarize the current body of knowledge describing the roles of M2 macrophages in RILF, with an emphasis on the expression and functions of non-coding RNAs.
基金Supported by grants from the Fundamental Research for South-Central University for Nationalities(No.PJS140011604)Chen Xiaoping Foundation Development of Science and Technology of Hubei(No.CXPJJH11800004-015)
文摘Objective Our study aimed to analyze the expression of miR-564 and TGF-β1 in cancer tissues and the serum of patients with radiation-induced lung injury,and to investigate the relationship between them and radiation-induced lung injury.Methods In situ hybridization and real-time fluorescence quantitative method were used to detect the expression of miR-564.Additionally,immunohistochemistry and enzyme-linked immunosorbent assay(ELISA)were performed to detect the expression of TGF-β1.Results The overall incidence of acute radiation pneumonia was 55.9%(100/179).The incidence of≥grade 2 radioactive pneumonia was 24.0%(43/179)and that of grade 1 was 31.8%(57/179).The expression of miR-564 in grade≥2 was slightly higher than that in patients without or with grade 1,but there was no statistical difference(P=0.86).The serum level and ratio of miR-564 in patients with grade≥2 were significantly higher than those without or with grade 1(P=0.005,P=0.025,respectively).The expression of TGF-β1 in grade≥2 was significantly higher than that of patients without or with grade 1(P=0.017).The serum levels of TGF-β1 in grade≥2 were significantly higher than those in patients without or with grade 1(P=0.038).Although the ratio of TGF-β1 in radiation pneumonia of grade≥2 was significantly higher than that of without or with grade 1,there was no significant difference(P=0.24).Moreover,patients with higher expression of miR-564 and lower expression of TGF-β1 had better prognosis.Conclusion MiR-564 and TGF-β1 are predictors of radiation-induced lung injury.Monitoring its changing trend can improve the accuracy of predicting radiation-induced lung injury.The levels and ratio of serum miR-564 and TGF-β1 in patients with radiation-induced lung injury are related to the severity of radiationinduced lung injury.
文摘The new coronavirus,severe acute respiratory syndrome coronavirus-2(SARSCoV-2),which emerged in December 2019 in Wuhan,China,has reached worldwide pandemic proportions,causing coronavirus disease 2019(COVID-19).The clinical manifestations of COVID-19 vary from an asymptomatic disease course to clinical symptoms of acute respiratory distress syndrome and severe pneumonia.The lungs are the primary organ affected by SARS-CoV-2,with a very slow turnover for renewal.SARS-CoV-2 enters the lungs via angiotensinconverting enzyme 2 receptors and induces an immune response with the accumulation of immunocompetent cells,causing a cytokine storm,which leads to target organ injury and subsequent dysfunction.To date,there is no effective antiviral therapy for COVID-19 patients,and therapeutic strategies are based on experience treating previously recognized coronaviruses.In search of new treatment modalities of COVID-19,cell-based therapy with mesenchymal stem cells(MSCs)and/or their secretome,such as soluble bioactive factors and extracellular vesicles,is considered supportive therapy for critically ill patients.Multipotent MSCs are able to differentiate into different types of cells of mesenchymal origin,including alveolar epithelial cells,lung epithelial cells,and vascular endothelial cells,which are severely damaged in the course of COVID-19 disease.Moreover,MSCs secrete a variety of bioactive factors that can be applied for respiratory tract regeneration in COVID-19 patients thanks to their trophic,anti-inflammatory,immunomodulatory,anti-apoptotic,pro-regenerative,and proangiogenic properties.
文摘Aim: Recently, there is an increased average of developing cancers. Though, the chemotherapeutic-treatment is unfavorable during pregnancy due to its harmful effects on developing fetuses, physicians have two ways to minimize these effects either by termination of the pregnancy or minimizing its side effects. The present work aimed to illustrate the susceptibility of cardiac, lung and dorsal aorta function to the widely applicable drugs doxorubicin and cisplatin as well as 5-flurouracil. Materials and Methods: Mother albino rats were arranged into four-groups (control, doxorubicin, cisplatin and 5-flurouracil-treated groups). Each pregnant rat received intraperitoneal administration of 0.2 mg/kg body weight at 10th and 14th day of gestation and sacrificed at parturition (two doses). At parturition, serum of mother rats used to assess troponin I, heat shock protein 70, 8-hydroxydeoxyguanosine, vascular endothelial growth factor and adhesion molecules (ICAM-1 & VCAM-1). Isoenzyme electrophoresis of alkaline and acid phosphatases, glucose-6-phosphate dehydrogenase and lactic dehydrogenase were estimated in serum, myocardium and dorsal aorta of mother rats. The myocardium and lung were processed for histopathological investigations for both mothers and their offspring. Single strand (comet assay) and double strand DNA damage were carried out in heart and dorsal aorta of mother rats. Results: The present finding revealed that there are detected alterations of myocardial markers and lung amino acid metabolism as well as disruption of myocardial isoenzymes. DNA damage of myocardium and dorsal aorta were observed. Conclusions: The authors concluded that the metabolic activity of heart and lung is highly susceptible to doxorubicin and cisplatin treatment compared to 5-flurouracil and the therapeutic doses must be degraded.
基金supported by Wenzhou Scientific Research Project(Y20210290).
文摘Objective:To explore the effect of oleuropein on sepsis-induced acute lung injury(ALI)in vitro and in vivo and investigate the underlying mechanism.Methods:In an lipopolysaccharide(LPS)-mediated cell model of sepsis-induced ALI and a cecal ligation and puncture-induced mouse model of septic ALI,CCK-8 assay and flow cytometry analysis were used to detect cell activity and apoptosis.ELISA and relevant assay kits were used to measure the levels of inflammatory cytokines and oxidative stress,respectively.Western blot was applied to determine the expression of apoptosis-and AMP-activated protein kinase(AMPK)/nuclear factor erythroid 2-related factor-2(Nrf-2)/heme oxygenase-1(HO-1)signaling-associated proteins.JC-1 staining,adenosine triphosphate(ATP)assay kit,and MitoSOX Red assays were performed to detect mitochondrial membrane potential,ATP content,and mitochondrial ROS formation,respectively.Moreover,lung injury was evaluated by measuring lung morphological alternations,lung wet-to-dry ratio,myeloperoxidase content,and total protein concentration.Results:Oleuropein reduced inflammatory reaction,oxidative damage,and apoptosis,and ameliorated mitochondrial dysfunction in LPS-exposed BEAS-2B cells and mice with septic ALI.Besides,oleuropein activated the AMPK/Nrf-2/HO-1 signaling pathway.However,these effects of oleuropein were abrogated by an AMPK inhibitor compound C.Conclusions:Oleuropein can protect against sepsis-induced ALI in vitro and in vivo by activating the AMPK/Nrf-2/HO-1 signaling,which might be a potential therapeutic agent for the treatment of sepsis-induced ALI.
文摘Objective: To evaluate the hydroxypiperquin phosphate (HPQP) as a modifier of radiation-induced injury in human and rat lungs. Methods: Sixty-five patients with lung cancer treated with conventional radiotherapy were divided into 2 groups randomly: Thirty cases were treated with HPQP and the others were in a control group. The changes of X - ray manifestation before, after and during taking drug were compared. An animal model of radiation-induced fibrosis of lungs was also established. Hydroxyproling (HP) content in lung tissue and the pathological changes in rat lungs were checked with microscope and electron microscope after 4 months and 6 months respectively. Results: The changes of lung X-ray manifestation in treatment group were much lighter than that in control group. The HP content and the change of pathology in the lungs of those rats with HPQP treatment were obviously less than that in control group. Conclusion: HPQP plays an important role in prevention and treatment of radiation-induced injury in lungs.
基金the Project of the Third National Master of Traditional Chinese Medicine of National Administration of Traditional Chinese Medicine/National Famous Traditional Chinese Medicine Inheritance Studio Construction(No.119(2018)of Education Letter of the State Office of Traditional Chinese Medicine).
文摘Novel coronavirus infection not only damages lung function,but also causes myocardial injury,elevated myocardial enzymes and heart failure,especially for patients with basic heart diseases who develop COVID-19,the first consideration should be the protection of cardiac function.Based on the theory of intermingled phlegm,blood stasis and toxin of heart disease put forward by Master Lei Zhongyi,the dialectical treatment thinking of COVID-19 patients from the concept of damage of phlegm,blood stasis and toxin to the heart were discussed.During the diagnosis,critical stage and recovery period of COVID-19,expectorant and blood-activating agents,heat and detoxification agents can be added to promote lung and asthma,free Bizheng and remove blood stasis,calm the heart and calm the mind,and promote the recovery of cardiopulmonary functions.
基金National Key Research and Development Program of China(Grant No.2017YFB0405702)the National Natural Science Foundation of China(Grant No.11775150).
文摘Irradiation makes structural materials of nuclear reactors degraded and failed.However,the damage process of materials induced by irradiation is not fully elucidated,mostly because the charged particles only bombarded the surface of the materials(within a few microns).In this work,we investigated the effects of surface irradiation on the indirect irradiation region of the(Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide(HEO)films in detail by plasma surface interaction.The results show that the damage induced by surface irradiation significantly extends to the indirect irradiation region of HEO film where the helium bubbles,dislocations,phase transformation,and the nickel oxide segregation were observed.