The inflexion point of electron density and effective electron temperature curves versus radio-frequency (RF) bias voltage is observed in the H mode of inductively coupled plasmas (ICPs). The electron energy proba...The inflexion point of electron density and effective electron temperature curves versus radio-frequency (RF) bias voltage is observed in the H mode of inductively coupled plasmas (ICPs). The electron energy probability function (EEPF) evolves first from a Maxwellian to a Druyvesteyn-like distribution, and then to a Maxwellian distribution again as the RF bias voltage increases. This can be explained by the interaction of two distinct bias-induced mechanisms, that is: bias- induced electron heating and bias-induced ion acceleration loss and the decrease of the effective discharge volume due to the sheath expansion. Furthermore, the trend of electron density is verified by a fluid model combined with a sheath module.展开更多
A simple method for measuring RF plasma parameters by means of a DC-biased Langmuir probe is developed. The object of this paper is to ensure the reliability of this method by using the other methods with different pr...A simple method for measuring RF plasma parameters by means of a DC-biased Langmuir probe is developed. The object of this paper is to ensure the reliability of this method by using the other methods with different principles. First, Langmuir probe current response on RF voltage superimposed to DC biased probe was examined in DC plasmas. Next, probe current response of DC biased probe in RF plasmas was studied and compared with the first experiment. The results were confirmed by using an emissive prove method, an ion acoustic wave method, and a square pulse response method. The method using a simple Langmuir probe is useful and convenient for measuring electron temperature , electron density , time-averaged space potential , and amplitude of space potential oscillation in RF plasmas with a frequency of the order of .展开更多
高功率螺旋波等离子体源作为可变比冲磁等离子体发动机(Variable Specific Impulse Mag-netoplasma Rocket,VASIMR)的第一级,其参数直接影响发动机的性能。为提高螺旋波源的等离子体密度和工质电离率,以4kW螺旋波等离子体源为研究对象,...高功率螺旋波等离子体源作为可变比冲磁等离子体发动机(Variable Specific Impulse Mag-netoplasma Rocket,VASIMR)的第一级,其参数直接影响发动机的性能。为提高螺旋波源的等离子体密度和工质电离率,以4kW螺旋波等离子体源为研究对象,利用射频补偿Langmuir探针诊断等离子体的离子密度和电子温度。试验结果表明,在强磁场条件下,随着功率的升高,螺旋波等离子体源内部共出现两次放电模式转换,最终进入了螺旋波放电模式。在达到螺旋波放电模式后,羽流区域的等离子体密度超过1×10^(12)cm^(-3),初步评估,放电天线区域的离子密度超过2×10^(14)cm^(-3),离子密度在放电管中心区域较高,沿径向逐渐降低。研究结果为30kW磁等离子体发动机的研制提供依据。展开更多
The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investiga...The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11075029,11175034,and 11205025)the Fundamental Research Funds for Central Universities,China(Grant No.DUT12RC(3)14)
文摘The inflexion point of electron density and effective electron temperature curves versus radio-frequency (RF) bias voltage is observed in the H mode of inductively coupled plasmas (ICPs). The electron energy probability function (EEPF) evolves first from a Maxwellian to a Druyvesteyn-like distribution, and then to a Maxwellian distribution again as the RF bias voltage increases. This can be explained by the interaction of two distinct bias-induced mechanisms, that is: bias- induced electron heating and bias-induced ion acceleration loss and the decrease of the effective discharge volume due to the sheath expansion. Furthermore, the trend of electron density is verified by a fluid model combined with a sheath module.
文摘A simple method for measuring RF plasma parameters by means of a DC-biased Langmuir probe is developed. The object of this paper is to ensure the reliability of this method by using the other methods with different principles. First, Langmuir probe current response on RF voltage superimposed to DC biased probe was examined in DC plasmas. Next, probe current response of DC biased probe in RF plasmas was studied and compared with the first experiment. The results were confirmed by using an emissive prove method, an ion acoustic wave method, and a square pulse response method. The method using a simple Langmuir probe is useful and convenient for measuring electron temperature , electron density , time-averaged space potential , and amplitude of space potential oscillation in RF plasmas with a frequency of the order of .
文摘高功率螺旋波等离子体源作为可变比冲磁等离子体发动机(Variable Specific Impulse Mag-netoplasma Rocket,VASIMR)的第一级,其参数直接影响发动机的性能。为提高螺旋波源的等离子体密度和工质电离率,以4kW螺旋波等离子体源为研究对象,利用射频补偿Langmuir探针诊断等离子体的离子密度和电子温度。试验结果表明,在强磁场条件下,随着功率的升高,螺旋波等离子体源内部共出现两次放电模式转换,最终进入了螺旋波放电模式。在达到螺旋波放电模式后,羽流区域的等离子体密度超过1×10^(12)cm^(-3),初步评估,放电天线区域的离子密度超过2×10^(14)cm^(-3),离子密度在放电管中心区域较高,沿径向逐渐降低。研究结果为30kW磁等离子体发动机的研制提供依据。
文摘The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.