This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadb...This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadband wireless communications. Four important aspects of PA design are addressed in this paper. First, we look at class-E PA design equations and provide an example of a class-E PA that achieves efficiency of 65-70% at 2.4 GHz. Then, we discuss state-of-the-art envelope tracking (ET) design for monolithic wideband RF mobile transmitter applications. A brief overview of Doherty PA design for the next-generation wireless handset applications is then given. Towards the end of the paper, we discuss an inherently broadband and highly efficient class-J PA design targeting future multi-band multi-standard wireless communication protocols.展开更多
One challenge of the implementation of fully-integrated RF power amplifiers into a deep submicro digital CMOS process is that no capacitor is available,especially no high density capacitor.To address this problem,a tw...One challenge of the implementation of fully-integrated RF power amplifiers into a deep submicro digital CMOS process is that no capacitor is available,especially no high density capacitor.To address this problem,a two-stage class-AB power amplifier with inter-stage matching realized by an inter-metal coupling capacitor is designed in a 180-nm digital CMOS process.This paper compares three structures of inter-metal coupling capacitors with metal-insulator-metal(MIM) capacitor regarding their capacitor density.Detailed simulations are carried out for the leakage,the voltage dependency,the temperature dependency,and the quality factor between an inter-metal shuffled(IMS) capacitor and an MIM capacitor.Finally,an IMS capacitor is chosen to perform the inter-stage matching.The techniques are validated via the design and implement of a two-stage class-AB RF power amplifier for an UHF RFID application.The PA occupies 370 × 200 μm^2 without pads in the 180-nm digital CMOS process and outputs 21.1 dBm with 40% drain efficiency and 28.1 dB power gain at 915 MHz from a single 3.3 V power supply.展开更多
文摘This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadband wireless communications. Four important aspects of PA design are addressed in this paper. First, we look at class-E PA design equations and provide an example of a class-E PA that achieves efficiency of 65-70% at 2.4 GHz. Then, we discuss state-of-the-art envelope tracking (ET) design for monolithic wideband RF mobile transmitter applications. A brief overview of Doherty PA design for the next-generation wireless handset applications is then given. Towards the end of the paper, we discuss an inherently broadband and highly efficient class-J PA design targeting future multi-band multi-standard wireless communication protocols.
文摘One challenge of the implementation of fully-integrated RF power amplifiers into a deep submicro digital CMOS process is that no capacitor is available,especially no high density capacitor.To address this problem,a two-stage class-AB power amplifier with inter-stage matching realized by an inter-metal coupling capacitor is designed in a 180-nm digital CMOS process.This paper compares three structures of inter-metal coupling capacitors with metal-insulator-metal(MIM) capacitor regarding their capacitor density.Detailed simulations are carried out for the leakage,the voltage dependency,the temperature dependency,and the quality factor between an inter-metal shuffled(IMS) capacitor and an MIM capacitor.Finally,an IMS capacitor is chosen to perform the inter-stage matching.The techniques are validated via the design and implement of a two-stage class-AB RF power amplifier for an UHF RFID application.The PA occupies 370 × 200 μm^2 without pads in the 180-nm digital CMOS process and outputs 21.1 dBm with 40% drain efficiency and 28.1 dB power gain at 915 MHz from a single 3.3 V power supply.