Rail wear has dramatic impact on track performance, ride quality and maintenance costs. The amount of rail wear is influenced by various elements among which geometric parameters play an important role. The amount of ...Rail wear has dramatic impact on track performance, ride quality and maintenance costs. The amount of rail wear is influenced by various elements among which geometric parameters play an important role. The amount of wear in Iran’s railway lines and its imposed maintenance costs oblige us to make modifications on the various geometrical parameters. In order to ensure the effectiveness of these changes, it is necessary to investigate these parameters and their effects on the wear. This research is aimed at studying the effects of different track geometrical parameters on the vertical and lateral wear by conducting a three phase field investigation. The first phase was carried out at the switches of a station, the second phase at a straight line, and the third at a curved line out of the station. The results obtained are analyzed and the role of each track geometrical parameter in the rail wear is discussed. Recommendations for prevention or reduction of rail wear are presented.展开更多
To maintain the safety of an open-type hot-metal car and to reduce wheel-rail wear during transportation, simulation models of the main components of such car were built using Pro/E software and then tested. In partic...To maintain the safety of an open-type hot-metal car and to reduce wheel-rail wear during transportation, simulation models of the main components of such car were built using Pro/E software and then tested. In particular, the Pro/E models were imported into ADAMS/Rail for assembly and then used to construct a complete hot-metal car dynamic model. Locomotive wheel-rail attack angle, wheel-rail lateral force, and wear index were used as evaluation parameters during the simulation to analyze the effects of bogie parameter, rail parameter, and speed of the hot-metal car on wheel-rail wear. An improvement scheme for reducing wheel-rail wear was proposed based on the result of the dynamic simulation, wherein wheel-rail wear and curving performance were analyzed and compared. The simulation provided an important reference for evaluating and improving the dynamic performance of the hot-metal car. The applied effect showed that the improvement scheme is effective.展开更多
Purpose–With the help of multi-body dynamics software UM,the paper uses Kik–Piotrowski model to simulate wheel-rail contact and Archard wear model for rail wear.Design/methodology/approach–The CRH5 vehicle-track co...Purpose–With the help of multi-body dynamics software UM,the paper uses Kik–Piotrowski model to simulate wheel-rail contact and Archard wear model for rail wear.Design/methodology/approach–The CRH5 vehicle-track coupling dynamics model is constructed for the wear study of rails of small radius curves,namely 200 and 350 m in Guangzhou East EMU Depot and those 250 and 300 m radius in Taiyuan South EMU Depot.Findings–Results show that the rail wear at the straight-circle point,the curve center point and the circlestraight point follows the order of center point>the circle-straight point>the straight-circle point.The wear on rail of small radius curves intensifies with the rise of running speed,and the wearing trend tends to fasten as the curve radius declines.The maximum rail wear of the inner rail can reach 2.29 mm,while that of the outer rail,10.11 mm.Originality/value–With the increase of the train passing number,the wear range tends to expand.The rail wear decreases with the increase of the curve radius.The dynamic response of vehicle increases with the increase of rail wear,among which the derailment coefficient is affected the most.When the number of passing vehicles reaches 1 million,the derailment coefficient exceeds the limit value,which poses a risk of derailment.展开更多
Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parame...Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parameters of the complex train-turnout system. To reproduce the actual operation conditions of railway turnouts, random distributions of these inputs need to be considered in rail wear simulation. For a given nominal layout of the high-speed railway turnout, 19 input parameters for rail wear simulation in high-speed railway turnouts are investigated based on orthogonal design of experiment. Three dynamic responses(wheel-rail friction work, normal contact force and size of contact patch) are defined as observed values and the significant factors(direction of passage, axle load, running speed, friction coefficient, and wheel and rail profiles) are determined by two unreplicated saturated factorial design methods, including the half-normal probability plot method and Dong 93 method. As part of the associated rail wear simulation, the influence of the wear models and the local elastic deformation on the rail wear was separately investigated. The calculation results for the wear models are quite different, especially for large creep mode. The local elastic deformation has a large effect on the sliding speed and rail wear and needs to be considered in the rail wear simulation.展开更多
Angle of attack and lateral force are two important parameters influencing wheel rail wear. This paper deals with the question of influences of the angle of attack and the lateral force on the wear of rail. A series ...Angle of attack and lateral force are two important parameters influencing wheel rail wear. This paper deals with the question of influences of the angle of attack and the lateral force on the wear of rail. A series of experiments are conducted on 1/4 JD 1 Wheel/Rail Tribology Simulation Facility. The angles of attack selected in the tests are 0°16′30″, 0°37′40″ and 1°0′0″ respectively. The lateral forces selected in the tests are 0.694 kN, 1.250 kN and 2.083 kN, respectively corresponding to the lateral forces of 25 kN, 45 kN and 75 kN measured in the field, with the aim of keeping the same ratio of L/V between laboratory and field conditions. It is found that the larger the angle of attack is, the more serious the wear of rail is. The relation of rail wear rate versus angle of attack is non linear, and the relation of rail wear rate versus lateral force is approximately linear. The influence of angle of attack is more serious than that of lateral force. For the tractive wheelset, the wear index involving linear and quadratic function terms of angle of attack has good agreement with the limited experimental data. Some conclusions are given.展开更多
文摘Rail wear has dramatic impact on track performance, ride quality and maintenance costs. The amount of rail wear is influenced by various elements among which geometric parameters play an important role. The amount of wear in Iran’s railway lines and its imposed maintenance costs oblige us to make modifications on the various geometrical parameters. In order to ensure the effectiveness of these changes, it is necessary to investigate these parameters and their effects on the wear. This research is aimed at studying the effects of different track geometrical parameters on the vertical and lateral wear by conducting a three phase field investigation. The first phase was carried out at the switches of a station, the second phase at a straight line, and the third at a curved line out of the station. The results obtained are analyzed and the role of each track geometrical parameter in the rail wear is discussed. Recommendations for prevention or reduction of rail wear are presented.
文摘To maintain the safety of an open-type hot-metal car and to reduce wheel-rail wear during transportation, simulation models of the main components of such car were built using Pro/E software and then tested. In particular, the Pro/E models were imported into ADAMS/Rail for assembly and then used to construct a complete hot-metal car dynamic model. Locomotive wheel-rail attack angle, wheel-rail lateral force, and wear index were used as evaluation parameters during the simulation to analyze the effects of bogie parameter, rail parameter, and speed of the hot-metal car on wheel-rail wear. An improvement scheme for reducing wheel-rail wear was proposed based on the result of the dynamic simulation, wherein wheel-rail wear and curving performance were analyzed and compared. The simulation provided an important reference for evaluating and improving the dynamic performance of the hot-metal car. The applied effect showed that the improvement scheme is effective.
基金by National Natural Science Foundation of China(51778050)Task of Science and Technology R&D Program of China Railway Corporation(P2018G003).
文摘Purpose–With the help of multi-body dynamics software UM,the paper uses Kik–Piotrowski model to simulate wheel-rail contact and Archard wear model for rail wear.Design/methodology/approach–The CRH5 vehicle-track coupling dynamics model is constructed for the wear study of rails of small radius curves,namely 200 and 350 m in Guangzhou East EMU Depot and those 250 and 300 m radius in Taiyuan South EMU Depot.Findings–Results show that the rail wear at the straight-circle point,the curve center point and the circlestraight point follows the order of center point>the circle-straight point>the straight-circle point.The wear on rail of small radius curves intensifies with the rise of running speed,and the wearing trend tends to fasten as the curve radius declines.The maximum rail wear of the inner rail can reach 2.29 mm,while that of the outer rail,10.11 mm.Originality/value–With the increase of the train passing number,the wear range tends to expand.The rail wear decreases with the increase of the curve radius.The dynamic response of vehicle increases with the increase of rail wear,among which the derailment coefficient is affected the most.When the number of passing vehicles reaches 1 million,the derailment coefficient exceeds the limit value,which poses a risk of derailment.
基金Projects(51425804,51378439,51608459)supported by the National Natural Science Foundation of ChinaProjects(U1334203,U1234201)supported by the Key Project of the China’s High-Speed Railway United Fund+1 种基金Project(2016M590898)supported by China Postdoctoral Science FoundationProject(2014GZ0009)supported by Sichuan Provinial Science and Technology support Program,China
文摘Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parameters of the complex train-turnout system. To reproduce the actual operation conditions of railway turnouts, random distributions of these inputs need to be considered in rail wear simulation. For a given nominal layout of the high-speed railway turnout, 19 input parameters for rail wear simulation in high-speed railway turnouts are investigated based on orthogonal design of experiment. Three dynamic responses(wheel-rail friction work, normal contact force and size of contact patch) are defined as observed values and the significant factors(direction of passage, axle load, running speed, friction coefficient, and wheel and rail profiles) are determined by two unreplicated saturated factorial design methods, including the half-normal probability plot method and Dong 93 method. As part of the associated rail wear simulation, the influence of the wear models and the local elastic deformation on the rail wear was separately investigated. The calculation results for the wear models are quite different, especially for large creep mode. The local elastic deformation has a large effect on the sliding speed and rail wear and needs to be considered in the rail wear simulation.
文摘Angle of attack and lateral force are two important parameters influencing wheel rail wear. This paper deals with the question of influences of the angle of attack and the lateral force on the wear of rail. A series of experiments are conducted on 1/4 JD 1 Wheel/Rail Tribology Simulation Facility. The angles of attack selected in the tests are 0°16′30″, 0°37′40″ and 1°0′0″ respectively. The lateral forces selected in the tests are 0.694 kN, 1.250 kN and 2.083 kN, respectively corresponding to the lateral forces of 25 kN, 45 kN and 75 kN measured in the field, with the aim of keeping the same ratio of L/V between laboratory and field conditions. It is found that the larger the angle of attack is, the more serious the wear of rail is. The relation of rail wear rate versus angle of attack is non linear, and the relation of rail wear rate versus lateral force is approximately linear. The influence of angle of attack is more serious than that of lateral force. For the tractive wheelset, the wear index involving linear and quadratic function terms of angle of attack has good agreement with the limited experimental data. Some conclusions are given.