期刊文献+
共找到2,388篇文章
< 1 2 120 >
每页显示 20 50 100
Electromagnetic Tomography System for Defect Detection of High-Speed Rail Wheel 被引量:1
1
作者 Yu Miao Xianglong Liu +4 位作者 Ze Liu Yuanli Yue Jianli Wu Jiwei Huo Yong Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期474-483,共10页
A novel electromagnetic tomography(EMT)system for defect detection of high-speed rail wheel is proposed,which differs from traditional electromagnetic tomography systems in its spatial arrangements of coils.A U-shaped... A novel electromagnetic tomography(EMT)system for defect detection of high-speed rail wheel is proposed,which differs from traditional electromagnetic tomography systems in its spatial arrangements of coils.A U-shaped sensor array was designed,and then a simulation model was built with the low frequency electromagnetic simulation software.Three different algorithms were applied to perform image reconstruction,therefore the defects can be detected from the reconstructed images.Based on the simulation results,an experimental system was built and image reconstruction were performed with the measured data.The reconstructed images obtained both from numerical simulation and experimental system indicated the locations of the defects of the wheel,which verified the feasibility of the EMT system and revealed its good application prospect in the future. 展开更多
关键词 electromagnetic tomography(EMT) high-speed rail wheel defect detection image reconstruction
下载PDF
On the Polygonal Wear Evolution of Heavy-Haul Locomotive Wheels due to Wheel/Rail Flexibility and Its Mitigation Measures
2
作者 Yunfan Yang Feifan Chai +3 位作者 Pengfei Liu Liang Ling Kaiyun Wang Wanming Zhai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期40-61,共22页
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med... Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures. 展开更多
关键词 Heavy-haul locomotive wheel polygonal wear wheel/rail flexibility Long-term polygonal wear evolution Mitigation measures
下载PDF
Measured dynamic load distribution within the in situ axlebox bearing of high-speed trains under polygonal wheel–rail excitation
3
作者 Yu Hou Xi Wang +4 位作者 Jiaqi Wei Menghua Zhao Wei Zhao Huailong Shi Chengyu Sha 《Railway Engineering Science》 EI 2024年第4期444-460,共17页
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen... The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input. 展开更多
关键词 High-speed train Axlebox bearing Dynamic load distribution In situ measurement Polygonal wheelrail excitation
下载PDF
A critical review of wheel/rail high frequency vibration-induced vibration fatigue of railway bogie in China
4
作者 Xingwen Wu Zhenxian Zhang +7 位作者 Wubin Cai Ningrui Yang Xuesong Jin Ping Wang Zefeng Wen Maoru Chi Shuling Liang Yunhua Huang 《Railway Sciences》 2024年第2期177-215,共39页
Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the ... Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators.Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration.This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration,including a brief introduction of short-pitch irregularities,associated high frequency vibration in railway bogie,typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.Findings–The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms.The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components.The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure,and the fatigue crack usually initiates from the defect of the weld seam.Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities.The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment,and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.Originality/value–The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration. 展开更多
关键词 wheel/rail high frequency vibration Vibration fatigue railway bogie Fatigue damage assessment
下载PDF
Research on the strain gauge mounting scheme of track wheel force measurement system based on high-speed wheel/rail relationship test rig
5
作者 Yuanwu Cai Bo Chen Chongyi Chang 《Railway Sciences》 2024年第4期503-513,共11页
Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/appro... Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system. 展开更多
关键词 Track wheel High-speed wheel/rail relationship test rig Instrumented wheelset Strain gauge Finite element
下载PDF
ANALYSIS OF THERMAL-ELASTIC STRESS OF WHEEL-RAIL IN ROLLING-SLIDING CONTACT 被引量:4
6
作者 ZHAO Xin JIN Xuesong ZHAI Wanming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期18-23,共6页
A coupling thermo-mechanical model of wheel/rail in rolling-sliding contact is put forward using finite element method. The normal contact pressure is idealized as the Hertzian distribution, and the tangential force p... A coupling thermo-mechanical model of wheel/rail in rolling-sliding contact is put forward using finite element method. The normal contact pressure is idealized as the Hertzian distribution, and the tangential force presented by Carter is used. In order to obtain thermal-elastic stress, the ther-mal-elastic plane stress problem is transformed to an elastic plane stress problem with equivalent fictitious thermal body force and fictitious boundary distributed force. The temperature rise and ther-mal-elastic stress of wheel and rail in rolling-sliding are analyzed. The non-steady state heat transfer between the contact surfaces of wheel and rail, heat-convection and radiation between the wheel/rail and the ambient are taken into consideration. The influences of the wheel rolling speed and wear rate on friction temperature and thermal-elastic stress are investigated. The results show the following: ① For rolling-sliding case, the thermal stress in the thin layer near the contact patch due to the friction temperature rise is severe. The higher rolling speed leads to the lower friction temperature rise and thermal stress in the wheel; ② For sliding case, the friction temperature and thermal stress of the wheel rise quickly in the initial sliding stage, and then get into a steady state gradually. The expansion of the contact patch, due to material wear, can affect the friction temperature rise and the thermal stress during wear process. The higher wear rate generates lower stress. The results can help under-stand the influence of friction temperature and thermal-elastic stress on wheel and rail damage. 展开更多
关键词 wheel/rail fiiction Thermal stress Temperature rise Heat transfer Finite element method
下载PDF
A dynamic simulation of the wheel–rail impact caused by a wheel flat using a 3D rolling contact model 被引量:7
7
作者 Liangliang Han Lin Jing Kai Liu 《Journal of Modern Transportation》 2017年第2期124-131,共8页
A three-dimensional (3-D) wheel-rail rolling contact model with a wheel fiat was built using commercial software Hypermesh, and the dynamic finite element simulation was conducted using LS-DYNA 3D/explicit code. Inf... A three-dimensional (3-D) wheel-rail rolling contact model with a wheel fiat was built using commercial software Hypermesh, and the dynamic finite element simulation was conducted using LS-DYNA 3D/explicit code. Influences of the train speed, flat length and axle load on the vertical wheel-rail impact response were discussed, respectively. The results show that the maximum vertical wheel-rail impact force induced by the wheel flat is higher than that generated by the perfect wheel, and these two dynamic impact forces are much greater than the static axle load. Besides, the maximum von Mises equivalent stress and maximum equivalent plastic strain are observed on the wheel-rail contact surface, and both of them as well as the maximum wheel-rail impact force are sensitive to train speed, fiat length and axle load. 展开更多
关键词 High-speed train wheel-rail impact wheel flat - FE simulation
下载PDF
Vibro-acoustic Radiation Characteristics Analysis of Railway Vehicle Wheel with Damping Ridges Based on Modal Strain Energy 被引量:2
8
作者 HE Bin XIAO Xinbiao +1 位作者 JIN Xuesong FANG Jianying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1056-1067,共12页
The existing researches on the damping wheel mainly focus on investigating the influence of damping structure change on the vibro-acoustic control.The changes include the geometric size of the damping structure,the da... The existing researches on the damping wheel mainly focus on investigating the influence of damping structure change on the vibro-acoustic control.The changes include the geometric size of the damping structure,the damping material parameters,and the placement,and so on.In order to further understand the mechanism in reducing the acoustic radiation of railway wheel with layer damping treatment,in this paper,the wheel is simply modified by a full-sized circular plate.The circle plate side has stuck circumference constrained damping ridges and radial constrained damping ridges on it.Based on a hybrid finite element method-boundary element method(FEM-BEM),the paper develops a vibro-acoustic radiation model for such a distributed constrained damping structure.The vibration and acoustic radiation of the circular plate is analyzed.In the analysis,the dynamic response of the system is obtained by using the 3D finite model superposition method.The obtained vibration response is used as the initial boundary condition in solving Helmholtz boundary integral equation for the sound radiation analysis.In the procedure,firstly,the modal analysis of the circular plate is performed to get the distribution of the system modal strain energy.Secondly,the vibro-acoustic radiation characteristics of the plate with different kinds of circumference damping ridges and radial damping ridges are compared in order to try to find the best effective damping ridge structure.Thirdly,using the distribution of the plate modal strain energy investigates the effect of the ridge distribution locations on the circular plate on its vibro-acoustic radiation.The calculation and analysis research results show that,the sticking circumference and radial damping ridges on the plate can control the vibro-acoustic radiation of the plate effectively in different frequency range.The distribution of the constrained damping ridge has an effect on reduction in vibro-acoustic radiation of the circular plate.The present research is very useful in the design of railway wheel with low noise level. 展开更多
关键词 wheel/rail noise vibro-acoustic radiation circumference damping ridge radial damping ridge modal strain energy
下载PDF
Effect of wheelset flexibility on wheel–rail contact behavior and a specific coupling of wheel–rail contact to flexible wheelset 被引量:10
9
作者 Shuoqiao Zhong Xinbiao Xiao +1 位作者 Zefeng Wen Xuesong Jin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期252-264,共13页
The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel... The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well. 展开更多
关键词 High-speed railway vehicle wheelrail contact behavior Flexible wheelset Modal analysis Resonance
下载PDF
Effects of Lateral Motion on the Creep Forces in Wheel/Rail Rolling Contact 被引量:2
10
作者 Jin Xuesong Zhang Weihua Hu Liujia National Traction Power Laboratory, Southwest Jiaotong University, Chengdu 610031, China 《Journal of Modern Transportation》 1997年第1期45-55,共11页
The influences of the lateral motion of a single wheelset running on a tangent railway on the creepages and creep forces between wheel and rail are investigated with numerical methods. ... The influences of the lateral motion of a single wheelset running on a tangent railway on the creepages and creep forces between wheel and rail are investigated with numerical methods. The effect of the yaw motion of wheelset is neglected in the analysis, and Kalker’s theory of three dimensional elastic bodies in rolling contact is employed to analyze the creep forces in the wheel/rail rolling contact with Non Hertzian form. 展开更多
关键词 lateral motion wheel/rail rolling contact creepage creep force
下载PDF
NUMERICAL SIMULATION OF TWO-POINT CONTACT BETWEEN WHEEL AND RAIL 被引量:8
11
作者 Jun Zhang Shouguang Sun Xuesong Jin 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第4期352-359,共8页
The elastic-plastic contact problem with rolling friction of wheel-rail is solved using the FE parametric quadratic programming method. Thus, the complex elastic-plastic contact problem can be calculated with high acc... The elastic-plastic contact problem with rolling friction of wheel-rail is solved using the FE parametric quadratic programming method. Thus, the complex elastic-plastic contact problem can be calculated with high accuracy and efficiency, while the Hertz's hypothesis and the elastic semi-space assumption are avoided. Based on the ‘one-point' contact calculation of wheel-rail, the computational model of ‘two-point' contact are established and calculated when the wheel flange is close to the rail. In the case of ‘two-point' contact, the changing laws of wheelrail contact are introduced and contact forces in various load cases are carefully analyzed. The main reason of wheel flange wear and rail side wear is found. Lubrication computational model of the wheel flange is constructed. Comparing with the result without lubrication, the contact force between wheel flange and rail decreases, which is beneficial for reducing the wear of wheel-rail. 展开更多
关键词 wheel-rail contact FEM parametric quadratic programming LUBRICATION
下载PDF
Simulation of wheel and rail profile wear:a review of numerical models 被引量:3
12
作者 N.Bosso M.Magelli N.Zampieri 《Railway Engineering Science》 2022年第4期403-436,共34页
The development of numerical models able to compute the wheel and rail profile wear is essential to improve the scheduling of maintenance operations required to restore the original profile shapes.This work surveys th... The development of numerical models able to compute the wheel and rail profile wear is essential to improve the scheduling of maintenance operations required to restore the original profile shapes.This work surveys the main numerical models in the literature for the evaluation of the uniform wear of wheel and rail profiles.The standard structure of these tools includes a multibody simulation of the wheel-track coupled dynamics and a wear module implementing an experimental wear law.Therefore,the models are classified according to the strategy adopted for the worn profile update,ranging from models performing a single computation to models based on an online communication between the dynamic and wear modules.Nevertheless,the most common strategy nowadays relies on an iteration of dynamic simulations in which the profiles are left unchanged,with co-simulation techniques often adopted to increase the computational performances.Work is still needed to improve the accuracy of the current models.New experimental campaigns should be carried out to obtain refined wear coefficients and models,while strategies for the evaluation of both longitudinal and transversal wear,also considering the effects of tread braking,should be implemented to obtain accurate damage models. 展开更多
关键词 WEAR wheel and rail profiles wheel-rail contact railway vehicle dynamics Multibody simulation CO-SIMULATION
下载PDF
An experimental study on the effects of friction modifiers on wheel-rail dynamic interactions with various angles of attack 被引量:1
13
作者 Zhen Yang Pan Zhang +1 位作者 Jan Moraal Zili Li 《Railway Engineering Science》 2022年第3期360-382,共23页
By modifying friction to the desired level,the application of friction modifiers(FMs)has been considered as a promising emerging tool in the railway engineering for increasing braking/traction force in poor adhesion c... By modifying friction to the desired level,the application of friction modifiers(FMs)has been considered as a promising emerging tool in the railway engineering for increasing braking/traction force in poor adhesion conditions and mitigating wheel/rail interface deterioration,energy consumption,vibration and noise.Understanding the effectiveness of FMs in wheel–rail dynamic interactions is crucial to their proper applications in practice,which has,however,not been well explained.This study experimentally investigates the effects of two types of top-of-rail FM,i.e.FM-A and FM-B,and their application dosages on wheel–rail dynamic interactions with a range of angles of attack(AoAs)using an innovative well-controlled V-track test rig.The tested FMs have been used to provide intermediate friction for wear and noise reduction.The effectiveness of the FMs is assessed in terms of the wheel–rail adhesion characteristics and friction rolling induced axle box acceleration(ABA).This study provides the following new insights into the study of FM:the applications of the tested FMs can both reduce the wheel–rail adhesion level and change the negative friction characteristic to positive;stick–slip can be generated in the V-Track and eliminated by FM-A but intensified by FM-B,depending on the dosage of the FMs applied;the negative friction characteristic is not a must for stick–slip;the increase in ABA with AoA is insignificant until stick–slip occurs and the ABA can thus be influenced by the applications of FM. 展开更多
关键词 Friction modifier V-track test rig ADHESION wheelrail dynamic interaction Angle of attack Axle box acceleration
下载PDF
Research on Wheel Rail Wear for a 140 t Open Type Hot Metal Car 被引量:1
14
作者 Bo Feng Sumei Jia Guosheng Feng 《Engineering(科研)》 2020年第8期563-580,共18页
To maintain the safety of an open-type hot-metal car and to reduce wheel-rail wear during transportation, simulation models of the main components of such car were built using Pro/E software and then tested. In partic... To maintain the safety of an open-type hot-metal car and to reduce wheel-rail wear during transportation, simulation models of the main components of such car were built using Pro/E software and then tested. In particular, the Pro/E models were imported into ADAMS/Rail for assembly and then used to construct a complete hot-metal car dynamic model. Locomotive wheel-rail attack angle, wheel-rail lateral force, and wear index were used as evaluation parameters during the simulation to analyze the effects of bogie parameter, rail parameter, and speed of the hot-metal car on wheel-rail wear. An improvement scheme for reducing wheel-rail wear was proposed based on the result of the dynamic simulation, wherein wheel-rail wear and curving performance were analyzed and compared. The simulation provided an important reference for evaluating and improving the dynamic performance of the hot-metal car. The applied effect showed that the improvement scheme is effective. 展开更多
关键词 Hot-Metal Car ADAMS/rail Dynamic Simulation wheel and rail Wear
下载PDF
Safety evaluation for railway vehicles using an improved indirect measurement method of wheel–rail forces 被引量:8
15
作者 Jing Zeng Lai Wei Pingbo Wu 《Journal of Modern Transportation》 2016年第2期114-123,共10页
The wheel-rail force measurement is of great importance to the condition monitoring and safety evaluation of railway vehicles. In this paper, an improved indirect method for wheel-rail force measurement is proposed to... The wheel-rail force measurement is of great importance to the condition monitoring and safety evaluation of railway vehicles. In this paper, an improved indirect method for wheel-rail force measurement is proposed to evaluate the running safety of railway vehicles. In this method, the equilibrium equations of a suspended wheelset are derived and the wheel-rail forces are then be obtained from measured suspension and inertia forces. This indirect method avoids structural modifications to the wheelset and is applicable to the long-term operation of railway vehicles. As the wheel-rail lateral forces at two sides of the wheelset are difficult to separate, a new derailment criterion by combined use of wheelset derailment coefficient and wheel unloading ratio is proposed. To illustrate its effectiveness, the indirect method is applied to safety evaluation of rail- way vehicles in different scenarios, such as the cross wind safety of a high-speed train and the safety of a metro vehicle with hunting motions. Then, the feasibility of using this method to identify wheel-rail forces for low-floor light rail vehicles with resilient wheels is discussed. The values identified by this method is compared with that by Simpack simulation for the same low-floor vehicle, which shows a good coincidence between them in the time domain of the wheelset lateral force and the wheel-rail vertical force. In addition, use of the method to determine the high-frequency wheel-rail interaction forces reveals that it is possible to identify the high-frequency wheel-rail forces through the accelerations on the axle box. 展开更多
关键词 wheel-rail force Safety evaluation - Indirect method Union safety domain wheelset derailment coefficient Hunting motions Cross wind Low-floor vehicle
下载PDF
An integrated approach for the optimization of wheel-rail contact force measurement systems 被引量:3
16
作者 S.Papini L.Pugi +1 位作者 A.Rindi E.Meli 《Journal of Modern Transportation》 2013年第2期95-102,共8页
A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test cas... A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test case is proposed, and a bogie with a layout used on some European locomotives such as SIEMENS El90 is studied. In this layout, an additional shaft on which brake disks are installed is used to transmit the braking torque to the wheelset through a single-stage gearbox. Using a mixed approach based on finite element techniques and statistical considerations, it is possible to evaluate an optimal layout for strain gauge positioning and to optimize the measurement system to diminish the effects of noise and disturbance. We also conducted preliminary evaluations on the precision and frequency response of the proposed system. 展开更多
关键词 wheel-rail interaction Contact force - Straingauge
下载PDF
Comparative study on wheel-rail dynamic interactions of side-frame cross-bracing bogie and sub-frame radial bogie 被引量:4
17
作者 Chunlei Yang Fu Li +2 位作者 Yunhua Huang Kaiyun Wang Baiqian He 《Journal of Modern Transportation》 2013年第1期1-8,共8页
Improving freight axle load is the most effective method to improve railway freight capability; based on the imported technologies of railway freight bogie, the 27 t axle load side-frame cross-bracing bogie and sub-fr... Improving freight axle load is the most effective method to improve railway freight capability; based on the imported technologies of railway freight bogie, the 27 t axle load side-frame cross-bracing bogie and sub-frame radial bogie are developed in China. In order to analyze and compare dynamic interactions of the two newly developed heavy-haul freight bogies, we establish a vehi- cle-track coupling dynamic model and use numerical calculation methods for computer simulation. The dynamic performances of the two bogies are simulated separately at various conditions. The results show that at the dipped joint and straight line running conditions, the wheel-rail dynamic interactions of both bogies are basically the same, but at the curve negotiation condition, the wear and the lateral force of the side-frame cross-bracing bogie are much higher than that of the sub-frame radial bogie, and the advantages become more obvious when the curve radius is smaller. The results also indicate that the sub- frame radial bogie has better low-wheel-rail interaction characteristics. 展开更多
关键词 Heavy haul Side-frame cross-bracing bogie .Sub-frame radial bogie . wheel-rail dynamic interaction
下载PDF
Wheel-rail Profiles Matching Design Considering Railway Track Parameters 被引量:6
18
作者 CUI Dabin LI Li +1 位作者 JIN Xuesong LI Ling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第4期410-417,共8页
The profile of wheel/rail has great concern with the vehicle running safety, the wheel/rail wear and the rolling contact fatigue between wheel and rail, due to its severer impact on the dynamic behavior of both the ra... The profile of wheel/rail has great concern with the vehicle running safety, the wheel/rail wear and the rolling contact fatigue between wheel and rail, due to its severer impact on the dynamic behavior of both the railway vehicle/track, and the wheel/rail rolling contact status. However, recent studies in this respect are mainly explored in reverse methods, where track parameters are predetermined and invariable during the optimizing process. This paper attempts to propose a wheel-rail profiles matching design method considering multi-parameter, through optimizing wheel/rail profile under different rail cants and track gauges, based on the existed optimization technology for the normal gap of wheel/rail. The method presented in this paper can also, compared with the prior reverse methods, be called "forward solution method" in which the riding comfort, wheel unloading rate and wheel/rail contact stress of the speed-up railway passenger car are calculated by means of a vehicle-track coupling dynamic model, with the range of the rail cant varying from 1/20 to 1/40 and the rail gauge from 1 433 mm to 1 441 mm. These results show that the distribution status of the pairs of contact points can be obviously improved and the contact stress can be reduced significantly; a great influence is exposed by the rail cant and track gauge on the dynamic behavior of the high speed passenger car, and an optimal vehicle dynamics behavior are obtained with the optimized wheel/rail profile when the rail cant is 1/30 and the track gauge is 1 435 mm. This research can provide important references for the investigation of the wheel-rail profiles matching design method considering multi-parameter. 展开更多
关键词 wheel profile OPTIMIZATION dynamic behavior rail cant track gauge
下载PDF
Study on Match Relationship between Rail and Wheel
19
作者 MA Teng ZHU Gui-lan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2000年第1期43-47,共5页
The match relationship between rail and wheel was studied by investigating the behavior of the contact fatigue wear in rail/wheel systems.The hardnesses of samples were close or equal to that of the real rail and whee... The match relationship between rail and wheel was studied by investigating the behavior of the contact fatigue wear in rail/wheel systems.The hardnesses of samples were close or equal to that of the real rail and wheel.Meanwhile the probe of study went further into the condition match and the material match based on the hardness match.The experimental results show that the wear rate depends on the hardness ratio(H/H)between rail and wheel,and the safe value of H/Hequals 1.00-11.20.The fatigue life of materials relies on the operating conditions except hardness.The selected experimental conditions satisfy the condition match except Rheat-treated out-line.The factor H/Sis the main element effecting wears in rail steel and wheel steel.The nature of the hardness match is the microstructure match under specified operating conditions. 展开更多
关键词 rail/wheel match WEAR contact fatigue HARDNESS m icrostructure
下载PDF
Experimental study of the wheel/rail impact caused by wheel flat within 400 km/h using full-scale roller rig 被引量:2
20
作者 Chongyi Chang Yuanwu Cai +2 位作者 Bo Chen Qiuze Li Pengfei Lin 《Railway Sciences》 2022年第1期76-89,共14页
Purpose–In service,the periodic clashes of wheel flat against the rail result in large wheel/rail impact force and high-frequency vibration,leading to severe damage on the wheelset,rail and track structure.This study... Purpose–In service,the periodic clashes of wheel flat against the rail result in large wheel/rail impact force and high-frequency vibration,leading to severe damage on the wheelset,rail and track structure.This study aims to analyze characteristics and dynamic impact law of wheel and rail caused by wheel flat of high-speed trains.Design/methodology/approach–A full-scale high-speed wheel/rail interface test rig was used for the test of the dynamic impact of wheel/rail caused by wheel flat of high-speed train.With wheel flats of different lengths,widths and depths manually set around the rolling circle of the wheel tread,and wheel/rail dynamic impact tests to the flats in the speed range of 0–400 km/h on the rig were conducted.Findings–As the speed goes up,the flat induced the maximum of the wheel/rail dynamic impact force increases rapidly before it reaches its limit at the speed of around 35 km/h.It then goes down gradually as the speed continues to grow.The impact of flat wheel on rail leads to 100–500 Hz middle-frequency vibration,and around 2,000 Hz and 6,000 Hz high-frequency vibration.In case of any wheel flat found during operation,the train speed shall be controlled according to the status of the flat and avoid the running speed of 20 km/h–80 km/h as much as possible.Originality/value–The research can provide a new method to obtain the dynamic impact of wheel/rail caused by wheel flat by a full-scale high-speed wheel/rail interface test rig.The relations among the flat size,the running speed and the dynamic impact are hopefully of reference to the building of speed limits for HSR wheel flat of different degrees. 展开更多
关键词 wheel/rail impact force High-frequency vibration Maintenance rules Speed limit
下载PDF
上一页 1 2 120 下一页 到第
使用帮助 返回顶部