期刊文献+
共找到568篇文章
< 1 2 29 >
每页显示 20 50 100
Human intrusion detection for high-speed railway perimeter under all-weather condition 被引量:1
1
作者 Pengyue Guo Tianyun Shi +1 位作者 Zhen Ma Jing Wang 《Railway Sciences》 2024年第1期97-110,共14页
Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofo... Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article. 展开更多
关键词 High-speed rail perimeter Personnel invasion Object detection ALL-WEATHER Radar-camera fusion
下载PDF
智慧城轨车地一体化机电系统标准体系构建研究 被引量:1
2
作者 杨廷志 《China Standardization》 2024年第1期56-59,共4页
With the rapid development and application of emerging information technologies such as cloud computing,big data,artificial intelligence,5G,satellite communication,and blockchain in urban rail transit,China’s urban r... With the rapid development and application of emerging information technologies such as cloud computing,big data,artificial intelligence,5G,satellite communication,and blockchain in urban rail transit,China’s urban rail transit has entered an era of intelligent transformation and upgrading.The development of intelligent systems and the construction of smart urban rail transit have formed a consensus in the industry.The electromechanical system is an important component of urban rail transit engineering,covering power supply stations,vehicles,stations,and lines.The depot and control center are important support for promoting the development of urban rail transit towards informatization and intelligence.However,research on the technical standards for the smart urban rail vehicle-ground integrated electromechanical system has just begun,and a technical standards system has not yet been formed,which cannot better support the electromechanical system.Therefore,it is necessary to conduct research on the technical standards system,propose the common criteria structure and standards list of the standards system,which can provide reference and guidance for the planning and establishment of China’s smart urban rail standards system. 展开更多
关键词 smart urban rail vehicles vehicle-ground integration electromechanical system standards system standards list
下载PDF
欧洲下一代轨道交通车辆网络控制技术研究
3
作者 焦曰里 晏鑫 苏超 《铁道车辆》 2024年第5期10-14,共5页
介绍了欧洲在轨道交通领域实施的Roll2Rail项目技术领域发展,该项目作为欧盟Shift2Rail的子项目之一,主要研究轨道交通车辆未来发展的关键技术。文章重点讨论了Roll2Rail中轨道车辆下一代网络控制系统最新技术发展,包含下一代网络控制... 介绍了欧洲在轨道交通领域实施的Roll2Rail项目技术领域发展,该项目作为欧盟Shift2Rail的子项目之一,主要研究轨道交通车辆未来发展的关键技术。文章重点讨论了Roll2Rail中轨道车辆下一代网络控制系统最新技术发展,包含下一代网络控制制式、场景、需求以及架构拓扑结构等,并分析存在的难点及下一步研究方向,对国内未来轨道交通装备创新发展有重要的借鉴意义。 展开更多
关键词 轨道车辆 Roll2Rail项目 网络控制 无线通信 欧洲
下载PDF
YOLO-O2E:A Variant YOLO Model for Anomalous Rail Fastening Detection
4
作者 Zhuhong Chu Jianxun Zhang +1 位作者 Chengdong Wang Changhui Yang 《Computers, Materials & Continua》 SCIE EI 2024年第7期1143-1161,共19页
Rail fasteners are a crucial component of the railway transportation safety system.These fasteners,distinguished by their high length-to-width ratio,frequently encounter elevated failure rates,necessitating manual ins... Rail fasteners are a crucial component of the railway transportation safety system.These fasteners,distinguished by their high length-to-width ratio,frequently encounter elevated failure rates,necessitating manual inspection and maintenance.Manual inspection not only consumes time but also poses the risk of potential oversights.With the advancement of deep learning technology in rail fasteners,challenges such as the complex background of rail fasteners and the similarity in their states are addressed.We have proposed an efficient and high-precision rail fastener detection algorithm,named YOLO-O2E(you only look once-O2E).Firstly,we propose the EFOV(Enhanced Field of View)structure,aiming to adjust the effective receptive field size of convolutional kernels to enhance insensitivity to small spatial variations.Additionally,The OD_MP(ODConv and MP_2)and EMA(EfficientMulti-Scale Attention)modules mentioned in the algorithm can acquire a wider spectrum of contextual information,enhancing the model’s ability to recognize and locate objectives.Additionally,we collected and prepared the GKA dataset,sourced from real train tracks.Through testing on the GKA dataset and the publicly available NUE-DET dataset,our method outperforms general-purpose object detection algorithms.On the GKA dataset,our model achieved a mAP 0.5 value of 97.6%and a mAP 0.5:0.95 value of 83.9%,demonstrating excellent inference speed.YOLO-O2E is an algorithm for detecting anomalies in railway fasteners that is applicable in practical industrial settings,addressing the industry gap in rail fastener detection. 展开更多
关键词 Rail fastening detection deep learning anomalous rail fastening variant YOLO feature reinforcement
下载PDF
Kinematic-mapping-model-guided analysis and optimization of 2-PSS&1-RR circular-rail parallel mechanism for fully steerable phased array antennas
5
作者 Guodong Tan Xiangfei Meng +4 位作者 Xuechao Duan Lulu Cheng Dingchao Niu Shuai He Dan Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期136-154,共19页
This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. In... This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. Initially, a comparative motion analysis between the 3D model of the mount and its full-scale prototype is conducted to validate effectiveness. Given the inherent complexity, a kinematic mapping model is established between the mount and the crank-slider linkage, providing a guiding framework for subsequent analysis and optimization. Guided by this model, feasible inverse and forward solutions are derived, enabling precise identification of stiffness singularities. The concept of singularity distance is thus introduced to reflect the structural stiffness of the mount. Subsequently, also guided by the mapping model, a heuristic algorithm incorporating two backtracking procedures is developed to reduce the mount's mass. Additionally, a parametric finite-element model is employed to explore the relation between singularity distance and structural stiffness. The results indicate a significant reduction(about 16%) in the antenna mount's mass through the developed algorithm, while highlighting the singularity distance as an effective stiffness indicator for this type of antenna mount. 展开更多
关键词 Innovative antenna mount Circular rail Kinematic mapping model Crank-slider linkage Stiffness singularity BACKTRACKING
下载PDF
Understanding the Resilience of Urban Rail Transit:Concepts,Reviews,and Trends
6
作者 Yun Wei Xin Yang +6 位作者 Xiao Xiao Zhiao Ma Tianlei Zhu Fei Dou Jianjun Wu Anthony Chen Ziyou Gao 《Engineering》 SCIE EI CAS CSCD 2024年第10期7-18,共12页
As the scale of urban rail transit(URT)networks expands,the study of URT resilience is essential for safe and efficient operations.This paper presents a comprehensive review of URT resilience and highlights potential ... As the scale of urban rail transit(URT)networks expands,the study of URT resilience is essential for safe and efficient operations.This paper presents a comprehensive review of URT resilience and highlights potential trends and directions for future research.First,URT resilience is defined by three primary abilities:absorption,resistance,and recovery,and four properties:robustness,vulnerability,rapidity,and redundancy.Then,the metrics and assessment approaches for URT resilience were summarized.The metrics are divided into three categories:topology-based,characteristic-based,and performance-based,and the assessment methods are divided into four categories:topological,simulation,optimization,and datadriven.Comparisons of various metrics and assessment approaches revealed that the current research trend in URT resilience is increasingly favoring the integration of traditional methods,such as conventional complex network analysis and operations optimization theory,with new techniques like big data and intelligent computing technology,to accurately assess URT resilience.Finally,five potential trends and directions for future research were identified:analyzing resilience based on multisource data,optimizing train diagram in multiple scenarios,accurate response to passenger demand through new technologies,coupling and optimizing passenger and traffic flows,and optimal line design. 展开更多
关键词 Urban rail transit Resilience assessment Resilience improvement Network disruption
下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
7
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
下载PDF
On the Polygonal Wear Evolution of Heavy-Haul Locomotive Wheels due to Wheel/Rail Flexibility and Its Mitigation Measures
8
作者 Yunfan Yang Feifan Chai +3 位作者 Pengfei Liu Liang Ling Kaiyun Wang Wanming Zhai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期40-61,共22页
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med... Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures. 展开更多
关键词 Heavy-haul locomotive Wheel polygonal wear Wheel/rail flexibility Long-term polygonal wear evolution Mitigation measures
下载PDF
Physics Guided Deep Learning-Based Model for Short-Term Origin–Destination Demand Prediction in Urban Rail Transit Systems Under Pandemic
9
作者 Shuxin Zhang Jinlei Zhang +3 位作者 Lixing Yang Feng Chen Shukai Li Ziyou Gao 《Engineering》 SCIE EI CAS CSCD 2024年第10期276-296,共21页
Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,incl... Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN. 展开更多
关键词 Short-term origin-destination demand prediction Urban rail transit PANDEMIC Physics-guided deep learning
下载PDF
Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel
10
作者 Haibo Feng Shaohua Li +7 位作者 Kexiao Wang Junheng Gao Shuize Wang Haitao Zhao Zhenyu Han Yong Deng Yuhe Huang Xinping Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期833-841,共9页
Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the au... Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the austenite dynamic recrystallization(DRX)behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines.The single-pass hot deformation results reveal that the prior austenite grain sizes(PAGSs)for samples with different deformation reductions decrease initially with an increase in deformation temperature.However,once the deformation temperature is beyond a certain threshold,the PAGSs start to increase.It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature,respectively.Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX.In the case of complete DRX,PAGS is predominantly determined by the deformation temperature of the final pass.It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads. 展开更多
关键词 eutectoid pearlite rail steel prior austenite grain size dynamic recrystallization single-pass hot deformation three-pass hot deformation
下载PDF
Running safety assessment method of trains under seismic conditions based on the derailment risk domain
11
作者 Zhihui Zhu Gaoyang Zhou +2 位作者 Weiqi Zheng Wei Gong Yongjiu Tang 《Railway Engineering Science》 EI 2024年第4期499-517,共19页
The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjud... The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk. 展开更多
关键词 Earthquake High-speed train Running safety Wheel–rail contact Derailment risk domain
下载PDF
Measured dynamic load distribution within the in situ axlebox bearing of high-speed trains under polygonal wheel–rail excitation
12
作者 Yu Hou Xi Wang +4 位作者 Jiaqi Wei Menghua Zhao Wei Zhao Huailong Shi Chengyu Sha 《Railway Engineering Science》 EI 2024年第4期444-460,共17页
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen... The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input. 展开更多
关键词 High-speed train Axlebox bearing Dynamic load distribution In situ measurement Polygonal wheel–rail excitation
下载PDF
Research and design of an expert diagnosis system for rail vehicle driven by data mechanism models
13
作者 Lin Li Jiushan Wang Shilu Xiao 《Railway Sciences》 2024年第4期480-502,共23页
Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep ... Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle.Based on data mechanism models,it predicts the lifespan of key components,evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.Findings-The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system,which helps operators to monitor the operation of vehicle online,predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.Originality/value-This system improves the efficiency of rail vehicle operation,scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle. 展开更多
关键词 Rail transit Rail vehicle Expert diagnosis Intelligent operation and maintenance Deep learning Lifespan prediction Reliability analysis
下载PDF
Design and verification of an improved experimental platform for stray current in urban rail transit
14
作者 LI Yaning KANG Hong +3 位作者 WANG Ye LI Wenfei JIAO Meng ZHANG Wencai 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期379-386,共8页
With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improv... With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit. 展开更多
关键词 urban rail transit stray current experimental platform transition resistance soil resistivity
下载PDF
Parametric investigation of railway fastenings into the formation and mitigation of short pitch corrugation
15
作者 Pan Zhang Shaoguang Li +1 位作者 Rolf Dollevoet Zili Li 《Railway Engineering Science》 EI 2024年第3期286-306,共21页
Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insight... Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insights into corrugation mitigation.A three-dimensional finite element vehicle-track dynamic interaction model is employed,which considers the coupling between the structural dynamics and the contact mechanics,while the damage mechanism is assumed to be differential wear.Various fastening models with different configurations,boundary conditions,and parameters of stiffness and damping are built up and analysed.These models may represent different service stages of fastenings in the field.Besides,the effect of train speeds on corrugation features is studied.The results indicate:(1)Fastening parameters and modelling play an important role in corrugation formation.(2)The fastening longitudinal constraint to the rail is the major factor that determines the corrugation formation.The fastening vertical and lateral constraints influence corrugation features in terms of spatial distribution and wavelength components.(3)The strengthening of fastening constraints in the longitudinal dimension helps to mitigate corrugation.Meanwhile,the inner fastening constraint in the lateral direction is necessary for corrugation alleviation.(4)The increase in fastening longitudinal stiffness and damping can reduce the vibration amplitudes of longitudinal compression modes and thus reduce the track corrugation propensity.The simulation in this work can well explain the field corrugation in terms of the occurrence possibility and major wavelength components.It can also explain the field data with respect to the small variation between the corrugation wavelength and train speed,which is caused by frequency selection and jump between rail longitudinal compression modes. 展开更多
关键词 Short pitch corrugation Fastening modelling and parameters Corrugation formation and mitigation Rail longitudinal compression modes Finite element vehicle-track interaction model
下载PDF
KL-SG High-Speed Rail-a catalyst for national economic development Sri Viknesh Permalu and Karthigesu Nagarajoo
16
作者 Sri Viknesh Permalu Karthigesu Nagarajoo 《Railway Sciences》 2024年第3期265-278,共14页
Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional s... Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional speed and efficiency,has garnered widespread attention as a transformative mode of transportation that transcends borders and fosters economic development.The Kuala Lumpur-Singapore(KL-SG)HSR project stands as a prominent exemplar of this paradigm,symbolizing the potential of HSR to serve as a catalyst for national economic advancement.Design/methodologylapproach-This paper is prepared to provide an insight into the benefits and advantages of HSR based on proven case studies and references from global HSRs,including China,Spain,France and Japan.Findings-The findings that have been obtained focus on enhanced connectivity and accessibility,attracting foreign direct investment,revitalizing regional economies,urban development and city regeneration,boosting tourism and cultural exchange,human capital development,regionai integration and environmental and sustainability benefits.Originality/value-The KL-SG HSR,linking Kuala Lumpur and Singapore,epitomizes the potential for HSR to be a transformative agent in the realm of economic development.This project encapsulates the aspirations of two dynamic Southeast Asian economies,united in their pursuit of sustainable growth,enhanced connectivity and global competitiveness.By scrutinizing the KLSG High-Speed Rail through the lens of economic benchmarking,a deeper understanding emerges of how such projects can drive progress in areas such as cross-border trade,tourism,urban development and technological innovation. 展开更多
关键词 High-speed rail TRANSPORTATION Railways Sustainable mobility Socioeconomic development Technology Papertype Case study
下载PDF
Experimental study on the acoustic roughness spectrum of high-speed railway rails
17
作者 Li Han Xiangyang Wu +2 位作者 Qing Yu Lanhua Liu Chenge Wang 《Railway Sciences》 2024年第6期704-716,共13页
Purpose–This study aims to investigate the acoustic roughness of rails on China’s high-speed railways,with a focus on short-wavelength irregularities(less than 80 cm),which are known to significantly contribute to n... Purpose–This study aims to investigate the acoustic roughness of rails on China’s high-speed railways,with a focus on short-wavelength irregularities(less than 80 cm),which are known to significantly contribute to noise.The goal is to develop a specific acoustic roughness spectrum tailored for China’s high-speed railway system,as no such spectrum currently exists.Design/methodology/approach–A long-term tracking study was conducted on major railway lines in China,monitoring rail roughness throughout the initial operational period and the rails’service life.Data preprocessing techniques such as peak removal and curvature correction were applied for acoustic adjustments.A spatial-wavelength domain transformation was performed,providing the distribution patterns and statistical characteristics of acoustic roughness on China’s high-speed rails.Based on these analyses,a model for constructing the acoustic roughness spectrum was developed.Findings–The study found that the acoustic roughness of China’s high-speed railway rails follows aχ2 distribution with six degrees of freedom.For wavelengths greater than 8 cm,the acoustic roughness spectrum remains below the ISO specified limits.In the wavelength range of 3.2 cm to 6.3 cm,the roughness is comparable to or within the limits specified by ISO 3095:2005 and ISO 3095:2013.However,for wavelengths shorter than 2.5 cm,the roughness exceeds ISO limits.Originality/value–This research fills the gap in the lack of a specific acoustic roughness spectrum for China’s high-speed railways.By establishing a tailored spectrum based on long-term data analysis,the findings provide valuable insights for noise control and rail maintenance in the context of China’s high-speed rail system. 展开更多
关键词 High-speed railway RAIL Acoustic roughness Short-wavelength irregularity
下载PDF
Current status and prospects of research on safety situation awareness of high speed railway operation environment
18
作者 Tianyun Shi Zhoulong Wang +4 位作者 Jia You Pengyue Guo Lili Jiang Huijin Fu Xu Gao 《Railway Sciences》 2024年第4期453-468,共16页
Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affect... Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters,perimeter intrusion and external environmental hazards.The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.Design/methodology/approach–In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments,the research status is elaborated,and the latest research progress and achievements of the team are introduced.This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological,perimeter and external environmental situation perception methods for high-speed rail operation.Findings–Based on the technical route of“situational awareness evaluation warning active control,”a technical system for monitoring the safety of high-speed train operation environments has been formed.Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters,perimeter intrusion and the external environment on high-speed rail safety.These works strongly support the improvement of China’s railway environmental safety guarantee technology.Originality/value–With the operation of CR450 high-speed trains with a speed of 400 kmper hour and the application of high-speed train autonomous driving technology in the future,new and higher requirements have been put forward for the safety of high-speed rail operation environments.The following five aspects of work are urgently needed:(1)Research the single factor disaster mechanism of wind,rain,snow,lightning,etc.for high-speed railways with a speed of 400 kms per hour,and based on this,study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment,revealing the coupling disastermechanism ofmultiple influencing factors;(2)Research covers multi-source data fusion methods and associated features such as disaster monitoring data,meteorological information,route characteristics and terrain and landforms,studying the spatio-temporal evolution laws of meteorological disasters,perimeter intrusions and external environmental hazards;(3)In terms of meteorological disaster situation awareness,research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines;(4)In terms of perimeter intrusion,research amulti-modal fusion perception method for typical scenarios of high-speed rail operation in all time,all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and(5)In terms of external environment,based on the existing general network framework for change detection,we will carry out research on change detection and algorithms in the surrounding environment of highspeed rail. 展开更多
关键词 High-speed rail operating environment Situation awareness Meteorological disasters Perimeter invasion External environment
下载PDF
High-speed railway and safety: Insights from a bibliometric approach
19
作者 Apostolos Anagnostopoulos 《High-Speed Railway》 2024年第3期187-196,共10页
High-Speed Rail(HSR)systems represent a significant advancement in modern transportation.They offer rapid,efficient,and environmentally friendly alternatives to traditional rail,air travel and road transportation.Even... High-Speed Rail(HSR)systems represent a significant advancement in modern transportation.They offer rapid,efficient,and environmentally friendly alternatives to traditional rail,air travel and road transportation.Even if highspeed trains appeared approximately in the middle of the previous century,several aspects concerning safety remain.This study aims to comprehensively review the scientific literature related to the safety issues of high-speed railways.A bibliometric analysis was carried out utilizing 2358 publications from the last two decades(2004-2023)to understand better the existing research on HSR and safety.Future trends and thematic areas of research are identified and analyzed.Chinese researchers and universities have led the total number of current publications related to the context of HSR safety.While most of the publications come from Chinese institutions,a significant international collaboration can be identified.The main areas of research on HSR and safety can be classified into four main clusters based on the keywords co-occurrence analysis and are related to risk management,structural dynamics and resilience in railway systems,geotechnical engineering and tunnelling and maintenance technologies.Researchers and policymakers can use the results of this study to better understand the dynamics of scientific research in the field of highspeed railways and safety and make decisions about future directions and funding priorities. 展开更多
关键词 High-speed rail SAFETY Literature review Bibliometric analysis VOSViewer
下载PDF
Research on the strain gauge mounting scheme of track wheel force measurement system based on high-speed wheel/rail relationship test rig
20
作者 Yuanwu Cai Bo Chen Chongyi Chang 《Railway Sciences》 2024年第4期503-513,共11页
Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/appro... Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system. 展开更多
关键词 Track wheel High-speed wheel/rail relationship test rig Instrumented wheelset Strain gauge Finite element
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部