Variability in the East Asian summer monsoon(EASM)brings the risk of heavy flooding or drought to the Yangtze River basin,with potentially devastating impacts.Early forecasts of the likelihood of enhanced or reduced m...Variability in the East Asian summer monsoon(EASM)brings the risk of heavy flooding or drought to the Yangtze River basin,with potentially devastating impacts.Early forecasts of the likelihood of enhanced or reduced monsoon rainfall can enable better management of water and hydropower resources by decision-makers,supporting livelihoods and major economic and population centres across eastern China.This paper demonstrates that the EASM is predictable in a dynamical forecast model from the preceding November,and that this allows skilful forecasts of summer mean rainfall in the Yangtze River basin at a lead time of six months.The skill for May–June–July rainfall is of a similar magnitude to seasonal forecasts initialised in spring,although the skill in June–July–August is much weaker and not consistently significant.However,there is some evidence for enhanced skill following El Niño events.The potential for decadal-scale variability in forecast skill is also examined,although we find no evidence for significant variation.展开更多
This paper presents the results of Rainfall-Runoff modeling and simulation of hydrological responses under changing climate using HEC-HMS model. The basin spatial data was processed by HEC-GeoHMS and imported to HEC-H...This paper presents the results of Rainfall-Runoff modeling and simulation of hydrological responses under changing climate using HEC-HMS model. The basin spatial data was processed by HEC-GeoHMS and imported to HEC-HMS. The calibration and validation of the HEC-HMS model was done using the observed hydrometeorological data (1989-2018) and HEC-GeoHMS output data. The goodness-of-fit of the model was measured using three performance indices: Nash and Sutcliffe coefficient (NSE) = 0.8, Coefficient of Determination (R<sup>2</sup>) = 0.8, and Percent Difference (D) = 0.03, with values showing very good performance of the model. Finally, the optimized HEC-HMS model has been applied to simulate the hydrological responses of Upper Baro Basin to the projected climate change for mid-term (2040s) and long-term (2090s) A1B emission scenarios. The simulation results have shown a mean annual percent decrease of 3.6 and an increase of 8.1 for Baro River flow in the 2040s and 2090s scenarios, respectively, compared to the baseline period (2000s). A pronounced flow variation is rather observed on a seasonal basis, reaching a reduction of 50% in spring and an increase of 50% in autumn for both mid-term and long-term scenarios with respect to the base period. Generally, the rainfall-runoff model is developed to solve, in a complementary way, the two main problems in water resources management: the lack of gauged sites and future hydrological response to climate change data of the basin and the region in general. The study results imply that seasonal and time variation in the hydrologic cycle would most likely cause hydrologic extremes. And hence, the developed model and output data are of paramount importance for adaptive strategies and sustainable water resources development in the basin.展开更多
The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in Chin...The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in China. Compared with mode variance friction, the mode station variance percentage not only reveals more localized characteristics of the variability of the summer rainfall, but also helps to distinguish the regions with a high degree of dominant EOF modes representing the analyzed observational variable. The atmospheric circulation diagnostic studies with the NCEP/NCAR reanalysis daily data from 1966 to 2000 show that in summer, abundant (scarce) rainfall in the belt-area from the upper-middle reaches of the Yangtze River northeastward to the Huaihe River basin is linked to strong (weak) heat sources over the eastern Tibetan Plateau, while the abundant (scarce) rainfall in the area to the south of the middle-lower reaches of the Yangtze River is closely linked to the weak (strong) heat sources over the tropical western Pacific.展开更多
We demonstrate that there is significant skill in the GloSea5 operational seasonal forecasting system for predicting June mean rainfall in the middle/lower Yangtze River basin up to four months in advance.Much of the ...We demonstrate that there is significant skill in the GloSea5 operational seasonal forecasting system for predicting June mean rainfall in the middle/lower Yangtze River basin up to four months in advance.Much of the rainfall in this region during June is contributed by the mei-yu rain band.We find that similar skill exists for predicting the East Asian summer monsoon index(EASMI)on monthly time scales,and that the latter could be used as a proxy to predict the regional rainfall.However,there appears to be little to be gained from using the predicted EASMI as a proxy for regional rainfall on monthly time scales compared with predicting the rainfall directly.Although interannual variability of the June mean rainfall is affected by synoptic and intraseasonal variations,which may be inherently unpredictable on the seasonal forecasting time scale,the major influence of equatorial Pacific sea surface temperatures from the preceding winter on the June mean rainfall is captured by the model through their influence on the western North Pacific subtropical high.The ability to predict the June mean rainfall in the middle and lower Yangtze River basin at a lead time of up to 4 months suggests the potential for providing early information to contingency planners on the availability of water during the summer season.展开更多
Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their ...Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.67% for monthly precipitation.展开更多
The Yangtze River has been subject to heavy flooding throughout history, and in recent times severe floods such as those in 1998 have resulted in heavy loss of life and livelihoods. Dams along the river help to manage...The Yangtze River has been subject to heavy flooding throughout history, and in recent times severe floods such as those in 1998 have resulted in heavy loss of life and livelihoods. Dams along the river help to manage flood waters, and are important sources of electricity for the region. Being able to forecast high-impact events at long lead times therefore has enormous potential benefit. Recent improvements in seasonal forecasting mean that dynamical climate models can start to be used directly for operational services. The teleconnection from E1 Nifio to Yangtze River basin rainfall meant that the strong E1 Nifio in winter 2015/16 provided a valuable opportunity to test the application of a dynamical forecast system. This paper therefore presents a case study of a real-time seasonal forecast for the Yangtze River basin, building on previous work demonstrating the retrospective skill of such a forecast. A simple forecasting methodology is presented, in which the forecast probabilities are derived from the historical relationship between hindcast and observations. Its performance for 2016 is discussed. The heavy rainfall in the May-June-July period was correctly forecast well in advance. August saw anomalously low rainfall, and the forecasts for the June-July-August period correctly showed closer to average levels. The forecasts contributed to the confidence of decision-makers across the Yangtze River basin. Trials of climate services such as this help to promote appropriate use of seasonal forecasts, and highlight areas for future improvements.展开更多
A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin (YRB) during July 11-13 2000 is explored in this study. The potential/stream function is used to analyze the upstream...A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin (YRB) during July 11-13 2000 is explored in this study. The potential/stream function is used to analyze the upstream "strong signals" of the water vapor transport in the Tibetan Plateau (TP). The studied time period covers from 2000 LST 5 July to 2000 LST 15 July (temporal resolution: 6 hours). By analyzing the three-dimensional structure of the water vapor flux, vorticity and divergence prior to and during the heavy rainfall event, the upstream "strong signals" related to this heavy rainfall event are revealed. A strong correlation exists between the heavy rainfall event in the YRB and the convective clouds over the TE The "convergence zone" of the water vapor transport is also identified, based on correlation analysis of the water vapor flux two days and one day prior to, and on the day of, the heavy rainfall. And this "convergence zone" coincides with the migration of the maximum rainfall over the YRB. This specific coupled structure actually plays a key role in generating heavy rainfall over the YRB. The eastward movement of the coupled system with a divergence]convergence center of the potential function at the upper/lower level resembles the spatiotemporal evolution of the heavy rainfall event over the YRB. These upstream "strong signals" are clearly traced in this study through analyzing the three-dimensional structure of the potential/stream function of upstream water vapor transport.展开更多
A sustained heavy rainfall event occurred over the Sichuan basin in southwest China during 10–18 August 2020,showing pronounced diurnal rainfall variations with nighttime peak and afternoon minimum values,except on t...A sustained heavy rainfall event occurred over the Sichuan basin in southwest China during 10–18 August 2020,showing pronounced diurnal rainfall variations with nighttime peak and afternoon minimum values,except on the first day.Results show that the westward extension of the anomalously strong western Pacific subtropical high was conducive to the maintenance of a southerly low-level jet(LLJ)in and to the southeast of the basin,which favored continuous water vapor transport and abnormally high precipitable water in the basin.The diurnal cycle of rainfall over the basin was closely related to the periodic oscillation of the LLJ in both wind speed and direction that was caused by the combination of inertial oscillation and terrain thermal forcing.The nocturnally enhanced rainfall was produced by moist convection mostly initiated during the evening hours over the southwest part of the basin where high convective available potential energy with moister near-surface moist air was present.The convective initiation took place as cold air from either previous precipitating clouds from the western Sichuan Plateau or a larger-scale northerly flow met a warm and humid current from the south.It was the slantwise lifting of the warm,moist airflow above the cold air,often facilitated by southwest vortices and quasi-geostrophic ascent,that released the convective instability and produced heavy rainfall.展开更多
In this study, a 47-day regional climate simulation of the heavy rainfall in the Yangtze-Huai River Basin during the summer of 2003 was conducted using the Weather Research and Forecast (WRY) model. The simulation r...In this study, a 47-day regional climate simulation of the heavy rainfall in the Yangtze-Huai River Basin during the summer of 2003 was conducted using the Weather Research and Forecast (WRY) model. The simulation reproduces reasonably well the evolution of the rainfall during the study period's three successive rainy phases, especially the frequent heavy rainfall events occurring in the Huai River Basin. The model captures the major rainfall peak observed by the monitoring stations in the morning. Another peak appears later than that shown by the observations. In addition, the simulation realistically captures not only the evolution of the low-level winds but also the characteristics of their diurnal variation. The strong southwesterly (low-level jet, LLJ) wind speed increases beginning in the early evening and reaches a peak in the morning; it then gradually decreases until the afternoon. The intense LLJ forms a strong convergent circulation pattern in the early morning along the Yangtze-Huai River Basin. This pattern partly explains the rainfall peak observed at this time. This study furnishes a basis for the further analysis of the mechanisms of evolution of the LLJ and for the further study of the interactions between the LLJ and rainfall.展开更多
Seasonal forecasts for Yangtze River basin rainfall in June,May–June–July(MJJ),and June–July–August(JJA)2020 are presented,based on the Met Office GloSea5 system.The three-month forecasts are based on dynamical pr...Seasonal forecasts for Yangtze River basin rainfall in June,May–June–July(MJJ),and June–July–August(JJA)2020 are presented,based on the Met Office GloSea5 system.The three-month forecasts are based on dynamical predictions of an East Asian Summer Monsoon(EASM)index,which is transformed into regional-mean rainfall through linear regression.The June rainfall forecasts for the middle/lower Yangtze River basin are based on linear regression of precipitation.The forecasts verify well in terms of giving strong,consistent predictions of above-average rainfall at lead times of at least three months.However,the Yangtze region was subject to exceptionally heavy rainfall throughout the summer period,leading to observed values that lie outside the 95%prediction intervals of the three-month forecasts.The forecasts presented here are consistent with other studies of the 2020 EASM rainfall,whereby the enhanced mei-yu front in early summer is skillfully forecast,but the impact of midlatitude drivers enhancing the rainfall in later summer is not captured.This case study demonstrates both the utility of probabilistic seasonal forecasts for the Yangtze region and the potential limitations in anticipating complex extreme events driven by a combination of coincident factors.展开更多
It is well known that on the interannual timescale,the westward extension of the western North Pacific subtropical high(WNPSH)results in enhanced rainfall over the Yangtze River basin(YRB)in summer,and vice versa.This...It is well known that on the interannual timescale,the westward extension of the western North Pacific subtropical high(WNPSH)results in enhanced rainfall over the Yangtze River basin(YRB)in summer,and vice versa.This study identifies that this correspondence experiences a decadal change in the late 1970s.That is,the WNPSH significantly affects YRB precipitation(YRBP)after the late 1970s(P2)but not before the late 1970s(P1).It is found that enhanced interannual variability of the WNPSH favors its effect on YRB rainfall in P2.On the other hand,after removing the strong WNPSH cases in P2 and making the WNPSH variability equivalent to that in P1,the WNPSH can still significantly affect YRB rainfall,suggesting that the WNPSH variability is not the only factor that affects the WNPSH-YRBP relationship.Further results indicate that the change in basic state of thermal conditions in the tropical WNP provides a favorable background for the enhanced WNPSH-YRBP relationship.In P2,the lower-tropospheric atmosphere in the tropical WNP gets warmer and wetter,and thus the meridional gradient of climatological equivalent potential temperature over the YRB is enhanced.As a result,the WNPSH-related circulation anomalies can more effectively induce YRB rainfall anomalies through affecting the meridional gradient of equivalent potential temperature over the YRB.展开更多
The Yangtze–Huai River Basin(YHRB)always suffers from anomalously heavy rainfall during the warm season,and has been well explored as a whole area during the past several decades.In this study,the YHRB is divided int...The Yangtze–Huai River Basin(YHRB)always suffers from anomalously heavy rainfall during the warm season,and has been well explored as a whole area during the past several decades.In this study,the YHRB is divided into two core regions-the northern YHRB(nYHRB)and southern YHRB(sYHRB)-based on 29-year(1979–2007)June–July–August(JJA)temporally averaged daily rainfall rates and the standard deviation of rainfall.A spectral analysis of JJA daily rainfall data over these 29 years reveals that a 3–7-day synoptic-timescale high-frequency mode is absolutely dominant over the nYHRB,with 10–20-day and 15–40-day modes playing a secondary role.By contrast,3–7-day and 10–20-day modes are both significant over the sYHRB,with 7–14-day,15–40-day,and 20–60-day modes playing secondary roles.Based on a comparison between bandpass-filtered rainfall anomalies and original rainfall series,a total of 42,1,5,and 3 heavy rainfall events(daily rainfall amounts in the top 5%of rainy days)are detected over the nYHRB,corresponding to 3–7-day,7–14-day,10–20-day,and 15–40-day variation disturbances.Meanwhile,a total of 28,8,12,and 6 heavy rainfall events are detected over the sYHRB,corresponding to 3–7-day,7–14-day,10–20-day,and 20–60-day variation disturbances.The results have important implications for understanding the duration of summer heavy rainfall events over both regions.展开更多
Hourly rainfall estimates from integrated satellite data are used to build a dynamically based climatology of convectively generated rainfall across the La Plata Basin in South America and adjacent oceans. Herein, the...Hourly rainfall estimates from integrated satellite data are used to build a dynamically based climatology of convectively generated rainfall across the La Plata Basin in South America and adjacent oceans. Herein, the focus of this manuscript is on 20S to 35S, including the Andes cordillera. Emphasis is placed on rainfall resulting from organized convective regimes which are known to produce the majority of seasonal rainfall in Southern South America and other continents. The statistical characteristics of individual events are quantified and examined with respect to regional atmospheric conditions. Among the factors considered are steering winds and wind shear, convective available potential energy (CAPE), localized sensible and latent heat sources over mountains and wetlands (Chaco), and the occurrence of baroclinic waves such as mid-latitude jet stream transient disturbances. Forcing and convective triggering mechanisms are inferred from the diagnosis of systematic patterns as evidenced in the continental diurnal cycle and longer periods of natural variability. The diurnal cycle of rainfall is especially informative with respect to the frequency and phase of rainfall associated with long-lived propagating rainfall “episodes”. Similar to findings in tropical northern Africa and tropical northern Australia, there is a strong presence of organized convection, which can propagate zonally hundreds to thousands of km as a coherent sequence of mesoscale convective systems. Convective triggering is often associated with elevated terrain, the Andes, and the La Plata basin region, which is especially rich in moist static energy. The passage of baroclinic waves over the Andes is consistent with eastward propagating clusters of convection, within which westward-propagating systems also reside. These organized convective systems over the La Plata Basin are analyzed with hourly rainfall estimates with CMOPRH method. Rainfall estimates at 8-km spatial resolution were obtained between December 2002 and June 2008. Very few data are missing so it is one of the most complete, longest and highest resolution data sets available to date that allows a comprehensive description of spatial and temporal distribution of convection from its hourly to interannual variability over the region. In this work, diurnal, intra and inter seasonal and interannual cycles are obtained and examined in the light of episodes of organized convection. Daily, monthly and yearly spatial patterns of rainfall accumulation over the La Plata Basin region vary both inter- and intra-seasonally and are forced by underlying dynamic and thermodynamics mechanisms. Time-longitude diagrams of CMORPH hourly rainfall are used to describe the genesis, structure, longevity, phase speed and inferences of the underlying dynamics and thermodynamics of episodes of organized convection. The episodes of organized convection are analyzed in terms of their duration, span, phase speed, starting and ending time, starting and ending longitude, month and year through frequency distribution analysis. Most episodes of organized convection move eastward across the La Plata Basin with variable phase speeds. Basic descriptive statistics indicate that the La Plata eastward propagating average phase speed is 13.0 m·s-1.展开更多
The middle and lower Yangtze River basin(MLYRB)suffered persistent heavy rainfall in summer 2020,with nearly continuous rainfall for about six consecutive weeks.How the likelihood of persistent heavy rainfall resembli...The middle and lower Yangtze River basin(MLYRB)suffered persistent heavy rainfall in summer 2020,with nearly continuous rainfall for about six consecutive weeks.How the likelihood of persistent heavy rainfall resembling that which occurred over the MLYRB in summer 2020(hereafter 2020PHR-like event)would change under global warming is investigated.An index that reflects maximum accumulated precipitation during a consecutive five-week period in summer(Rx35day)is introduced.This accumulated precipitation index in summer 2020 is 60%stronger than the climatology,and a statistical analysis further shows that the 2020 event is a 1-in-70-year event.The model projection results derived from the 50-member ensemble of CanESM2 and the multimodel ensemble(MME)of the CMIP5 and CMIP6 models show that the occurrence probability of the 2020PHR-like event will dramatically increase under global warming.Based on the Kolmogorov-Smirnoff test,one-third of the CMIP5 and CMIP6 models that have reasonable performance in reproducing the 2020PHR-like event in their historical simulations are selected for the future projection study.The CMIP5 and CMIP6 MME results show that the occurrence probability of the 2020PHR-like event under the present-day climate will be double under lower-emission scenarios(CMIP5 RCP4.5,CMIP6 SSP1-2.6,and SSP2-4.5)and 3-5 times greater under higher-emission scenarios(3.0 times for CMIP5 RCP8.5,2.9 times for CMIP6 SSP3-7.0,and 4.8 times for CMIP6 SSP5-8.5).The inter-model spread of the probability change is small,lending confidence to the projection results.The results provide a scientific reference for mitigation of and adaptation to future climate change.展开更多
High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale...High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models.展开更多
[Objective] The research aimed to study the application of ordinal set pair analysis in the annual precipitation prediction of Liao River basin.[Method] The ordinal theory was introduced into the set pair analysis mod...[Objective] The research aimed to study the application of ordinal set pair analysis in the annual precipitation prediction of Liao River basin.[Method] The ordinal theory was introduced into the set pair analysis modeling,and the prediction model of set pair analysis was improved.A kind of rainfall prediction model based on the ordinal set pair analysis (OSPA) was put forward.The time sequence of annual rainfall in the hydrological rainfall station of Liao River basin during 1956-2006 was the research objective.The annual rainfall during 1998-2006 was predicted by the model,and the error analysis was given.[Result] In the relative errors of predicted results by ordinal set pair analysis,there were six relative errors within 5%,which occupied 66.7% of the total prediction number.One relative error was during 5%-10%,which occupied 11.1% of the total prediction number.Two relative errors were during 10%-15%,which occupied 22.2% of the total prediction number.All the relative errors were less than 20%,which met the precision requirement of annual rainfall prediction in Forecast Specification of Hydrological Information.[Conclusion] The rainfall prediction based on the ordinal set pair analysis model had high precision,and the prediction result was ideal.It was suitable for the annual rainfall prediction.展开更多
This study assessed the rainfall trends and changes over Mono river basin under the highest greenhouse gas emission scenario RCP8.5. Simulations of eight regional climate models (RCMs) provided by Africa-CORDEX progra...This study assessed the rainfall trends and changes over Mono river basin under the highest greenhouse gas emission scenario RCP8.5. Simulations of eight regional climate models (RCMs) provided by Africa-CORDEX program were considered. To analyze the performance of a set of regional climate models, the MBE (mean bias error), the RMSE (root mean square error), the volume bias (VB), correlation coefficient (R2) and the t-Test statistics were calculated. The precipitation concentration index (PCI), Mann-Kendall trend test, Theil-Sen’s slope estimator (β), and relative percentage change methods were also adopted for data analysis. Changes from the baseline period 1981-2010 were computed for far future (2061-2090 and 2071-2100). As results, the analysis herein highlighted the multi-models’ mean ability to simulate the Mono river basin rainfall adequately. Two distinct patterns emerged from the calculated PCI indicating that stations in southern basin will have moderate, irregular, and strongly irregular rainfall concentrations, whereas stations in northern basin will have irregular and strongly irregular rainfall concentrations. Significant declining in the rainfall was detected in most stations for the future period. The evolution of the monthly average rainfall amounts will be broadly characterized by a decrease and increase between 32.4 and 12% with late rainy seasons. It is understood that future changes in rainfall distribution and trends will affect the availability of water for crops, which should affect the productivity of rain fed agriculture.展开更多
Using 70 years of daily rainfall records in eight stations, an analysis of variability and trends of daily heavy rainfall events over Niger River Basin Development Authority Area was carried out by using Standardized ...Using 70 years of daily rainfall records in eight stations, an analysis of variability and trends of daily heavy rainfall events over Niger River Basin Development Authority Area was carried out by using Standardized Anomaly Index and Spearman Rank Correlation Coefficient. Significant temporal variability on interannual and decadal time-scales was observed in the frequency of heavy rainfall events and annual heavy rainfall amount. Both the annual heavy rainfall amount and frequency of heavy rainfall events demonstrated no pronounced temporal decreasing or increasing trend. However, more recent data records from 1981 onwards revealed an increasing trend. Thus, evidence of a temporal change is apparent in heavy rainfall events in the last three decades in sympathy with global warming.展开更多
With rainfall data of 51 stations in April - September in the Pearl River basin during 1954 - 2003, we have applied the Principal Component Analysis method to research the spatial distribution characteristics of April...With rainfall data of 51 stations in April - September in the Pearl River basin during 1954 - 2003, we have applied the Principal Component Analysis method to research the spatial distribution characteristics of April - September rainfall. The results reveal the following. In the Pearl River basin, there is different precipitation varying from 600 mm to 1900 mm in April - September and precipitation decreases gradually from southeast to northwest. The standard deviation distribution decreases gradually from east to west on the whole. The rainfall distribution of the Pearl River basin has five main types: Type I: there is flood (drought) in the whole region, Type Ⅱ: there is flood (drought) in the north and drought (flood) in the south, Type IlI: there is flood (drought) in the east and drought (flood) in the west, Type IV: there id flood (drought) in the central part and drought (flood) in the east and west, and Type V: there is flood (drought) in center and drought (flood) in north and south. The types of the flood (drought) in the whole region and flood (drought) in the north and drought (flood) in the south appear much more than the others, being 64% of the total. From the 10-year moving average, it is seen that rainfall between April and September in the Pearl River basin region is mainly dry in 1983 - 1992, and mainly dry in the east and wet in the west in 1967 - 1971 and wet in the east and dryin the west in 1979.展开更多
Climate extremes have increased in the recent past and they are further being exacerbated by climate change and variability. In this paper, we sought to determine rainfall characteristics over the Lake Victoria Basin ...Climate extremes have increased in the recent past and they are further being exacerbated by climate change and variability. In this paper, we sought to determine rainfall characteristics over the Lake Victoria Basin of Kenya in 1987-2016, as a basis of understanding climate variability. The methodology used included;Standardized Precipitation Index to depict variability, coefficient of variation for spatial analysis and the Mann-Kendall test to test the presence of trends in data. We established that Lake Victoria basin is relatively wet through-out the year, with two distinct rainfall seasons March-April-May (MAM) and October-November-December (OND) that support human livelihood and ecology. The normal wetness conditions have declined over time, paving way for both dry and wet extremes conditions between 1997-1998 and 2002-2006, respectively. The rainfall extremes have become frequent in the last decade in 2007-2016. We also established a decline in the MAM rainfall seasons, and an increase during the October-December rainfall seasons in 1987-2016. Furthermore, the number of rainy days has declined with the onset and cessations of both long rains and short rains having shown a variability of at least 50% and 30% respectively, in a range of about 100 to 200 Julian days. The decline in wet condition is likely to affect economic activities especially the rainfed agriculture. The changing rainfall trends over the basin therefore, call for proper human livelihood planning and ecological monitoring in order to achieve ecological sustainability.展开更多
基金supported by the UK–China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund
文摘Variability in the East Asian summer monsoon(EASM)brings the risk of heavy flooding or drought to the Yangtze River basin,with potentially devastating impacts.Early forecasts of the likelihood of enhanced or reduced monsoon rainfall can enable better management of water and hydropower resources by decision-makers,supporting livelihoods and major economic and population centres across eastern China.This paper demonstrates that the EASM is predictable in a dynamical forecast model from the preceding November,and that this allows skilful forecasts of summer mean rainfall in the Yangtze River basin at a lead time of six months.The skill for May–June–July rainfall is of a similar magnitude to seasonal forecasts initialised in spring,although the skill in June–July–August is much weaker and not consistently significant.However,there is some evidence for enhanced skill following El Niño events.The potential for decadal-scale variability in forecast skill is also examined,although we find no evidence for significant variation.
文摘This paper presents the results of Rainfall-Runoff modeling and simulation of hydrological responses under changing climate using HEC-HMS model. The basin spatial data was processed by HEC-GeoHMS and imported to HEC-HMS. The calibration and validation of the HEC-HMS model was done using the observed hydrometeorological data (1989-2018) and HEC-GeoHMS output data. The goodness-of-fit of the model was measured using three performance indices: Nash and Sutcliffe coefficient (NSE) = 0.8, Coefficient of Determination (R<sup>2</sup>) = 0.8, and Percent Difference (D) = 0.03, with values showing very good performance of the model. Finally, the optimized HEC-HMS model has been applied to simulate the hydrological responses of Upper Baro Basin to the projected climate change for mid-term (2040s) and long-term (2090s) A1B emission scenarios. The simulation results have shown a mean annual percent decrease of 3.6 and an increase of 8.1 for Baro River flow in the 2040s and 2090s scenarios, respectively, compared to the baseline period (2000s). A pronounced flow variation is rather observed on a seasonal basis, reaching a reduction of 50% in spring and an increase of 50% in autumn for both mid-term and long-term scenarios with respect to the base period. Generally, the rainfall-runoff model is developed to solve, in a complementary way, the two main problems in water resources management: the lack of gauged sites and future hydrological response to climate change data of the basin and the region in general. The study results imply that seasonal and time variation in the hydrologic cycle would most likely cause hydrologic extremes. And hence, the developed model and output data are of paramount importance for adaptive strategies and sustainable water resources development in the basin.
基金This work was supported by the National Key Program for Developing Basic Research (Grant No. 2004CB418303)the National Natural Science Foundation of China (Grant No. 40175018).
文摘The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in China. Compared with mode variance friction, the mode station variance percentage not only reveals more localized characteristics of the variability of the summer rainfall, but also helps to distinguish the regions with a high degree of dominant EOF modes representing the analyzed observational variable. The atmospheric circulation diagnostic studies with the NCEP/NCAR reanalysis daily data from 1966 to 2000 show that in summer, abundant (scarce) rainfall in the belt-area from the upper-middle reaches of the Yangtze River northeastward to the Huaihe River basin is linked to strong (weak) heat sources over the eastern Tibetan Plateau, while the abundant (scarce) rainfall in the area to the south of the middle-lower reaches of the Yangtze River is closely linked to the weak (strong) heat sources over the tropical western Pacific.
基金supported by the UK–China ResearchInnovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund
文摘We demonstrate that there is significant skill in the GloSea5 operational seasonal forecasting system for predicting June mean rainfall in the middle/lower Yangtze River basin up to four months in advance.Much of the rainfall in this region during June is contributed by the mei-yu rain band.We find that similar skill exists for predicting the East Asian summer monsoon index(EASMI)on monthly time scales,and that the latter could be used as a proxy to predict the regional rainfall.However,there appears to be little to be gained from using the predicted EASMI as a proxy for regional rainfall on monthly time scales compared with predicting the rainfall directly.Although interannual variability of the June mean rainfall is affected by synoptic and intraseasonal variations,which may be inherently unpredictable on the seasonal forecasting time scale,the major influence of equatorial Pacific sea surface temperatures from the preceding winter on the June mean rainfall is captured by the model through their influence on the western North Pacific subtropical high.The ability to predict the June mean rainfall in the middle and lower Yangtze River basin at a lead time of up to 4 months suggests the potential for providing early information to contingency planners on the availability of water during the summer season.
基金Under the auspices of the National Natural Science Foundation of China(No.41661099)the National Key Research and Development Program of China(No.Grant 2016YFA0601601)
文摘Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.67% for monthly precipitation.
基金supported by the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership China as part of the Newton Fundsupported by the National Natural Science Foundation of China(Grant No.41320104007)supported by the Project for Development of Key Techniques in Meteorological Operation Forecasting(Grant No.YBGJXM201705)
文摘The Yangtze River has been subject to heavy flooding throughout history, and in recent times severe floods such as those in 1998 have resulted in heavy loss of life and livelihoods. Dams along the river help to manage flood waters, and are important sources of electricity for the region. Being able to forecast high-impact events at long lead times therefore has enormous potential benefit. Recent improvements in seasonal forecasting mean that dynamical climate models can start to be used directly for operational services. The teleconnection from E1 Nifio to Yangtze River basin rainfall meant that the strong E1 Nifio in winter 2015/16 provided a valuable opportunity to test the application of a dynamical forecast system. This paper therefore presents a case study of a real-time seasonal forecast for the Yangtze River basin, building on previous work demonstrating the retrospective skill of such a forecast. A simple forecasting methodology is presented, in which the forecast probabilities are derived from the historical relationship between hindcast and observations. Its performance for 2016 is discussed. The heavy rainfall in the May-June-July period was correctly forecast well in advance. August saw anomalously low rainfall, and the forecasts for the June-July-August period correctly showed closer to average levels. The forecasts contributed to the confidence of decision-makers across the Yangtze River basin. Trials of climate services such as this help to promote appropriate use of seasonal forecasts, and highlight areas for future improvements.
文摘A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin (YRB) during July 11-13 2000 is explored in this study. The potential/stream function is used to analyze the upstream "strong signals" of the water vapor transport in the Tibetan Plateau (TP). The studied time period covers from 2000 LST 5 July to 2000 LST 15 July (temporal resolution: 6 hours). By analyzing the three-dimensional structure of the water vapor flux, vorticity and divergence prior to and during the heavy rainfall event, the upstream "strong signals" related to this heavy rainfall event are revealed. A strong correlation exists between the heavy rainfall event in the YRB and the convective clouds over the TE The "convergence zone" of the water vapor transport is also identified, based on correlation analysis of the water vapor flux two days and one day prior to, and on the day of, the heavy rainfall. And this "convergence zone" coincides with the migration of the maximum rainfall over the YRB. This specific coupled structure actually plays a key role in generating heavy rainfall over the YRB. The eastward movement of the coupled system with a divergence]convergence center of the potential function at the upper/lower level resembles the spatiotemporal evolution of the heavy rainfall event over the YRB. These upstream "strong signals" are clearly traced in this study through analyzing the three-dimensional structure of the potential/stream function of upstream water vapor transport.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.41775050,91937301,41775002,42005008)the Science Development Fund of Chinese of Academy of Meteorological Sciences(2020KJ022).
文摘A sustained heavy rainfall event occurred over the Sichuan basin in southwest China during 10–18 August 2020,showing pronounced diurnal rainfall variations with nighttime peak and afternoon minimum values,except on the first day.Results show that the westward extension of the anomalously strong western Pacific subtropical high was conducive to the maintenance of a southerly low-level jet(LLJ)in and to the southeast of the basin,which favored continuous water vapor transport and abnormally high precipitable water in the basin.The diurnal cycle of rainfall over the basin was closely related to the periodic oscillation of the LLJ in both wind speed and direction that was caused by the combination of inertial oscillation and terrain thermal forcing.The nocturnally enhanced rainfall was produced by moist convection mostly initiated during the evening hours over the southwest part of the basin where high convective available potential energy with moister near-surface moist air was present.The convective initiation took place as cold air from either previous precipitating clouds from the western Sichuan Plateau or a larger-scale northerly flow met a warm and humid current from the south.It was the slantwise lifting of the warm,moist airflow above the cold air,often facilitated by southwest vortices and quasi-geostrophic ascent,that released the convective instability and produced heavy rainfall.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-04)the National High Technology Research and Development Program of China (863 Program, Grant No. 2010AA012304)+2 种基金the National Natural Science Foundation of China (Grant No. 40905049)the LASG State Key Laboratory special fundthe LASG free exploration fund
文摘In this study, a 47-day regional climate simulation of the heavy rainfall in the Yangtze-Huai River Basin during the summer of 2003 was conducted using the Weather Research and Forecast (WRY) model. The simulation reproduces reasonably well the evolution of the rainfall during the study period's three successive rainy phases, especially the frequent heavy rainfall events occurring in the Huai River Basin. The model captures the major rainfall peak observed by the monitoring stations in the morning. Another peak appears later than that shown by the observations. In addition, the simulation realistically captures not only the evolution of the low-level winds but also the characteristics of their diurnal variation. The strong southwesterly (low-level jet, LLJ) wind speed increases beginning in the early evening and reaches a peak in the morning; it then gradually decreases until the afternoon. The intense LLJ forms a strong convergent circulation pattern in the early morning along the Yangtze-Huai River Basin. This pattern partly explains the rainfall peak observed at this time. This study furnishes a basis for the further analysis of the mechanisms of evolution of the LLJ and for the further study of the interactions between the LLJ and rainfall.
基金This work and its contributors(Philip BETT,Gill MARTIN,Nick DUNSTONE,Adam SCAIFE,and Hazel THORNTON)were supported by the UK-China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton FundChaofan LI was supported by the National Key Research and Development Program of China(Grant No.2018YFC1506005)National Natural Science Foundation of China(Grant No.41775083).
文摘Seasonal forecasts for Yangtze River basin rainfall in June,May–June–July(MJJ),and June–July–August(JJA)2020 are presented,based on the Met Office GloSea5 system.The three-month forecasts are based on dynamical predictions of an East Asian Summer Monsoon(EASM)index,which is transformed into regional-mean rainfall through linear regression.The June rainfall forecasts for the middle/lower Yangtze River basin are based on linear regression of precipitation.The forecasts verify well in terms of giving strong,consistent predictions of above-average rainfall at lead times of at least three months.However,the Yangtze region was subject to exceptionally heavy rainfall throughout the summer period,leading to observed values that lie outside the 95%prediction intervals of the three-month forecasts.The forecasts presented here are consistent with other studies of the 2020 EASM rainfall,whereby the enhanced mei-yu front in early summer is skillfully forecast,but the impact of midlatitude drivers enhancing the rainfall in later summer is not captured.This case study demonstrates both the utility of probabilistic seasonal forecasts for the Yangtze region and the potential limitations in anticipating complex extreme events driven by a combination of coincident factors.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.41905055 and 41721004)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190500)the Fundamental Research Funds for the Central Universities(Grant No.B200202145).
文摘It is well known that on the interannual timescale,the westward extension of the western North Pacific subtropical high(WNPSH)results in enhanced rainfall over the Yangtze River basin(YRB)in summer,and vice versa.This study identifies that this correspondence experiences a decadal change in the late 1970s.That is,the WNPSH significantly affects YRB precipitation(YRBP)after the late 1970s(P2)but not before the late 1970s(P1).It is found that enhanced interannual variability of the WNPSH favors its effect on YRB rainfall in P2.On the other hand,after removing the strong WNPSH cases in P2 and making the WNPSH variability equivalent to that in P1,the WNPSH can still significantly affect YRB rainfall,suggesting that the WNPSH variability is not the only factor that affects the WNPSH-YRBP relationship.Further results indicate that the change in basic state of thermal conditions in the tropical WNP provides a favorable background for the enhanced WNPSH-YRBP relationship.In P2,the lower-tropospheric atmosphere in the tropical WNP gets warmer and wetter,and thus the meridional gradient of climatological equivalent potential temperature over the YRB is enhanced.As a result,the WNPSH-related circulation anomalies can more effectively induce YRB rainfall anomalies through affecting the meridional gradient of equivalent potential temperature over the YRB.
基金jointly supported by the National Basic Research Program of China [973 Program,grant number2015CB954102]the National Natural Science Foundation of China [grant number 41475043]
文摘The Yangtze–Huai River Basin(YHRB)always suffers from anomalously heavy rainfall during the warm season,and has been well explored as a whole area during the past several decades.In this study,the YHRB is divided into two core regions-the northern YHRB(nYHRB)and southern YHRB(sYHRB)-based on 29-year(1979–2007)June–July–August(JJA)temporally averaged daily rainfall rates and the standard deviation of rainfall.A spectral analysis of JJA daily rainfall data over these 29 years reveals that a 3–7-day synoptic-timescale high-frequency mode is absolutely dominant over the nYHRB,with 10–20-day and 15–40-day modes playing a secondary role.By contrast,3–7-day and 10–20-day modes are both significant over the sYHRB,with 7–14-day,15–40-day,and 20–60-day modes playing secondary roles.Based on a comparison between bandpass-filtered rainfall anomalies and original rainfall series,a total of 42,1,5,and 3 heavy rainfall events(daily rainfall amounts in the top 5%of rainy days)are detected over the nYHRB,corresponding to 3–7-day,7–14-day,10–20-day,and 15–40-day variation disturbances.Meanwhile,a total of 28,8,12,and 6 heavy rainfall events are detected over the sYHRB,corresponding to 3–7-day,7–14-day,10–20-day,and 20–60-day variation disturbances.The results have important implications for understanding the duration of summer heavy rainfall events over both regions.
文摘Hourly rainfall estimates from integrated satellite data are used to build a dynamically based climatology of convectively generated rainfall across the La Plata Basin in South America and adjacent oceans. Herein, the focus of this manuscript is on 20S to 35S, including the Andes cordillera. Emphasis is placed on rainfall resulting from organized convective regimes which are known to produce the majority of seasonal rainfall in Southern South America and other continents. The statistical characteristics of individual events are quantified and examined with respect to regional atmospheric conditions. Among the factors considered are steering winds and wind shear, convective available potential energy (CAPE), localized sensible and latent heat sources over mountains and wetlands (Chaco), and the occurrence of baroclinic waves such as mid-latitude jet stream transient disturbances. Forcing and convective triggering mechanisms are inferred from the diagnosis of systematic patterns as evidenced in the continental diurnal cycle and longer periods of natural variability. The diurnal cycle of rainfall is especially informative with respect to the frequency and phase of rainfall associated with long-lived propagating rainfall “episodes”. Similar to findings in tropical northern Africa and tropical northern Australia, there is a strong presence of organized convection, which can propagate zonally hundreds to thousands of km as a coherent sequence of mesoscale convective systems. Convective triggering is often associated with elevated terrain, the Andes, and the La Plata basin region, which is especially rich in moist static energy. The passage of baroclinic waves over the Andes is consistent with eastward propagating clusters of convection, within which westward-propagating systems also reside. These organized convective systems over the La Plata Basin are analyzed with hourly rainfall estimates with CMOPRH method. Rainfall estimates at 8-km spatial resolution were obtained between December 2002 and June 2008. Very few data are missing so it is one of the most complete, longest and highest resolution data sets available to date that allows a comprehensive description of spatial and temporal distribution of convection from its hourly to interannual variability over the region. In this work, diurnal, intra and inter seasonal and interannual cycles are obtained and examined in the light of episodes of organized convection. Daily, monthly and yearly spatial patterns of rainfall accumulation over the La Plata Basin region vary both inter- and intra-seasonally and are forced by underlying dynamic and thermodynamics mechanisms. Time-longitude diagrams of CMORPH hourly rainfall are used to describe the genesis, structure, longevity, phase speed and inferences of the underlying dynamics and thermodynamics of episodes of organized convection. The episodes of organized convection are analyzed in terms of their duration, span, phase speed, starting and ending time, starting and ending longitude, month and year through frequency distribution analysis. Most episodes of organized convection move eastward across the La Plata Basin with variable phase speeds. Basic descriptive statistics indicate that the La Plata eastward propagating average phase speed is 13.0 m·s-1.
基金supported by the National Natural Science Foundation of China(Grant No.42088101)the National Key Research and Development Program of China(2020YFA0608901 and 2019YFC1510004)+1 种基金the Natural Science Foundation of Jiangsu(BK20190781),the National Natural Science Foundation of China(Grant No.42005020)the General Program of Natural Science Foundation of Jiangsu Higher Education Institutions(19KJB170019).
文摘The middle and lower Yangtze River basin(MLYRB)suffered persistent heavy rainfall in summer 2020,with nearly continuous rainfall for about six consecutive weeks.How the likelihood of persistent heavy rainfall resembling that which occurred over the MLYRB in summer 2020(hereafter 2020PHR-like event)would change under global warming is investigated.An index that reflects maximum accumulated precipitation during a consecutive five-week period in summer(Rx35day)is introduced.This accumulated precipitation index in summer 2020 is 60%stronger than the climatology,and a statistical analysis further shows that the 2020 event is a 1-in-70-year event.The model projection results derived from the 50-member ensemble of CanESM2 and the multimodel ensemble(MME)of the CMIP5 and CMIP6 models show that the occurrence probability of the 2020PHR-like event will dramatically increase under global warming.Based on the Kolmogorov-Smirnoff test,one-third of the CMIP5 and CMIP6 models that have reasonable performance in reproducing the 2020PHR-like event in their historical simulations are selected for the future projection study.The CMIP5 and CMIP6 MME results show that the occurrence probability of the 2020PHR-like event under the present-day climate will be double under lower-emission scenarios(CMIP5 RCP4.5,CMIP6 SSP1-2.6,and SSP2-4.5)and 3-5 times greater under higher-emission scenarios(3.0 times for CMIP5 RCP8.5,2.9 times for CMIP6 SSP3-7.0,and 4.8 times for CMIP6 SSP5-8.5).The inter-model spread of the probability change is small,lending confidence to the projection results.The results provide a scientific reference for mitigation of and adaptation to future climate change.
基金supported by the National Basic Research Program of China (the 973 Program,Grant No.2010CB951101)the National Natural Science Foundation of China (Grants No. 50979022 and 50679018)+2 种基金the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT0717)the Special Fund of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Hohai University (Grant No. 1069-50986312)the Open Fund Approval of the State Key Laboratory of Hydraulics and Mountain River Engineering of Sichuan University (Grant No. SKLH-OF-0807)
文摘High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models.
基金Supported by National Eleventh Five-year Water Special Item(2009ZX07208-010-T004)High-level Talent Introduction Plan Item, North China University of Water Resources and Electric Power(200926)+2 种基金Natural Science Research of Henan Education Department(2009A570002)Young Core Teacher Plan Item in Henan Province(2009GGJ3-061)Graduate Education Innovation Plan Foundation,North China University of Water Resources and Electric Power(YK2010-12)
文摘[Objective] The research aimed to study the application of ordinal set pair analysis in the annual precipitation prediction of Liao River basin.[Method] The ordinal theory was introduced into the set pair analysis modeling,and the prediction model of set pair analysis was improved.A kind of rainfall prediction model based on the ordinal set pair analysis (OSPA) was put forward.The time sequence of annual rainfall in the hydrological rainfall station of Liao River basin during 1956-2006 was the research objective.The annual rainfall during 1998-2006 was predicted by the model,and the error analysis was given.[Result] In the relative errors of predicted results by ordinal set pair analysis,there were six relative errors within 5%,which occupied 66.7% of the total prediction number.One relative error was during 5%-10%,which occupied 11.1% of the total prediction number.Two relative errors were during 10%-15%,which occupied 22.2% of the total prediction number.All the relative errors were less than 20%,which met the precision requirement of annual rainfall prediction in Forecast Specification of Hydrological Information.[Conclusion] The rainfall prediction based on the ordinal set pair analysis model had high precision,and the prediction result was ideal.It was suitable for the annual rainfall prediction.
文摘This study assessed the rainfall trends and changes over Mono river basin under the highest greenhouse gas emission scenario RCP8.5. Simulations of eight regional climate models (RCMs) provided by Africa-CORDEX program were considered. To analyze the performance of a set of regional climate models, the MBE (mean bias error), the RMSE (root mean square error), the volume bias (VB), correlation coefficient (R2) and the t-Test statistics were calculated. The precipitation concentration index (PCI), Mann-Kendall trend test, Theil-Sen’s slope estimator (β), and relative percentage change methods were also adopted for data analysis. Changes from the baseline period 1981-2010 were computed for far future (2061-2090 and 2071-2100). As results, the analysis herein highlighted the multi-models’ mean ability to simulate the Mono river basin rainfall adequately. Two distinct patterns emerged from the calculated PCI indicating that stations in southern basin will have moderate, irregular, and strongly irregular rainfall concentrations, whereas stations in northern basin will have irregular and strongly irregular rainfall concentrations. Significant declining in the rainfall was detected in most stations for the future period. The evolution of the monthly average rainfall amounts will be broadly characterized by a decrease and increase between 32.4 and 12% with late rainy seasons. It is understood that future changes in rainfall distribution and trends will affect the availability of water for crops, which should affect the productivity of rain fed agriculture.
文摘Using 70 years of daily rainfall records in eight stations, an analysis of variability and trends of daily heavy rainfall events over Niger River Basin Development Authority Area was carried out by using Standardized Anomaly Index and Spearman Rank Correlation Coefficient. Significant temporal variability on interannual and decadal time-scales was observed in the frequency of heavy rainfall events and annual heavy rainfall amount. Both the annual heavy rainfall amount and frequency of heavy rainfall events demonstrated no pronounced temporal decreasing or increasing trend. However, more recent data records from 1981 onwards revealed an increasing trend. Thus, evidence of a temporal change is apparent in heavy rainfall events in the last three decades in sympathy with global warming.
基金Research on Techniques of Predicting the Prospects of Drought in Guangdong(2005B32601007)
文摘With rainfall data of 51 stations in April - September in the Pearl River basin during 1954 - 2003, we have applied the Principal Component Analysis method to research the spatial distribution characteristics of April - September rainfall. The results reveal the following. In the Pearl River basin, there is different precipitation varying from 600 mm to 1900 mm in April - September and precipitation decreases gradually from southeast to northwest. The standard deviation distribution decreases gradually from east to west on the whole. The rainfall distribution of the Pearl River basin has five main types: Type I: there is flood (drought) in the whole region, Type Ⅱ: there is flood (drought) in the north and drought (flood) in the south, Type IlI: there is flood (drought) in the east and drought (flood) in the west, Type IV: there id flood (drought) in the central part and drought (flood) in the east and west, and Type V: there is flood (drought) in center and drought (flood) in north and south. The types of the flood (drought) in the whole region and flood (drought) in the north and drought (flood) in the south appear much more than the others, being 64% of the total. From the 10-year moving average, it is seen that rainfall between April and September in the Pearl River basin region is mainly dry in 1983 - 1992, and mainly dry in the east and wet in the west in 1967 - 1971 and wet in the east and dryin the west in 1979.
文摘Climate extremes have increased in the recent past and they are further being exacerbated by climate change and variability. In this paper, we sought to determine rainfall characteristics over the Lake Victoria Basin of Kenya in 1987-2016, as a basis of understanding climate variability. The methodology used included;Standardized Precipitation Index to depict variability, coefficient of variation for spatial analysis and the Mann-Kendall test to test the presence of trends in data. We established that Lake Victoria basin is relatively wet through-out the year, with two distinct rainfall seasons March-April-May (MAM) and October-November-December (OND) that support human livelihood and ecology. The normal wetness conditions have declined over time, paving way for both dry and wet extremes conditions between 1997-1998 and 2002-2006, respectively. The rainfall extremes have become frequent in the last decade in 2007-2016. We also established a decline in the MAM rainfall seasons, and an increase during the October-December rainfall seasons in 1987-2016. Furthermore, the number of rainy days has declined with the onset and cessations of both long rains and short rains having shown a variability of at least 50% and 30% respectively, in a range of about 100 to 200 Julian days. The decline in wet condition is likely to affect economic activities especially the rainfed agriculture. The changing rainfall trends over the basin therefore, call for proper human livelihood planning and ecological monitoring in order to achieve ecological sustainability.