In this study,Typhoon Rammasun(2014)was simulated using the Weather Research and Forecasting model to examine the kinetic energy during rapid intensification(RI).Budget analyses revealed that in the inner area of the ...In this study,Typhoon Rammasun(2014)was simulated using the Weather Research and Forecasting model to examine the kinetic energy during rapid intensification(RI).Budget analyses revealed that in the inner area of the typhoon,the conversion from symmetric divergent kinetic energy associated with the collocation of strong cyclonic circulation and inward flow led to an increase in the symmetric rotational kinetic energy in the lower troposphere.The increase in the symmetric rotational kinetic energy in the mid and upper troposphere resulted from the upward transport of symmetric rotational kinetic energy from the lower troposphere.In the outer area,both typhoon and Earth’s rotation played equally important roles in the conversion from symmetric divergent kinetic energy to symmetric rotational kinetic energy in the lower troposphere.The decrease in the symmetric rotational kinetic energy in the upper troposphere was caused by the conversion to asymmetric rotational kinetic energy through the collocation of symmetric tangential rotational winds and the radial advection of asymmetric tangential rotational winds by radial environmental winds.展开更多
In a limited number of ensembles, some samples do not adequately reflect the true atmospheric state and can in turn affect forecast performance. This study explored the feasibility of sample optimization using the ens...In a limited number of ensembles, some samples do not adequately reflect the true atmospheric state and can in turn affect forecast performance. This study explored the feasibility of sample optimization using the ensemble Kalman filter(EnKF) for a simulation of the 2014 Super Typhoon Rammasun, which made landfall in southern China in July 2014. Under the premise of sufficient ensemble spread, keeping samples with a good fit to observations and eliminating those with poor fit can affect the performance of En KF. In the sample optimization, states were selected based on the sample spatial correlation between the ensemble state and observations. The method discarded ensemble states that were less representative and, to maintain the overall ensemble size, generated new ensemble states by reproducing them from ensemble states with a good fit by adding random noise. Sample selection was performed based on radar echo data. Results showed that applying En KF with optimized samples improved the estimated track, intensity,precipitation distribution, and inner-core structure of Typhoon Rammasun. Therefore, the authors proposed that distinguishing between samples with good and poor fits is vital for ensemble prediction, suggesting that sample optimization is necessary to the effective use of En KF.展开更多
Typhoon is one of the frequent natural disasters in coastal regions of China.As shown in many studies,the impact of typhoons on the South China Sea(SCS)should not be overlooked.Super typhoon Rammasun(2014)was studied ...Typhoon is one of the frequent natural disasters in coastal regions of China.As shown in many studies,the impact of typhoons on the South China Sea(SCS)should not be overlooked.Super typhoon Rammasun(2014)was studied that formed in the northwestern Pacific,passed through the SCS,then landed in the Leizhou Peninsula.Remote sensing data and model products were used to analyze the spatiotemporal variations of the cold eddies,upwelling,sea surface temperature,mixed layer depth,rainfall,sea surface salinity,suspended sediment concentration,and surface-level anomaly.Results confirm the constant presence of upwelling and cold eddies in the southeast of Hainan(north of the Zhongsha Islands)and the southeast of Vietnam in July.In addition,we found the strengthening effect of super typhoon Rammasun on the upwelling and cold eddies in the SCS.The major reasons for the continuous decrease in sea surface temperature and the slow regaining of seawater temperature were the enhanced upwelling and vertical mixing caused by the typhoon.The increasing of the surface runoff in the Indochina Peninsula was mainly affected by the typhoon,with some contribution for the southeast of Vietnam’s cold eddy and upwelling.展开更多
Based on conventional meteorological observation data, NCEP 1° × 1° reanalysis data, reanalysis data with resolution 0.75° × 0.75° from ECMWF and Doppler weather radar, we analyzed the we...Based on conventional meteorological observation data, NCEP 1° × 1° reanalysis data, reanalysis data with resolution 0.75° × 0.75° from ECMWF and Doppler weather radar, we analyzed the weather conditions and physical characteristics of Super Typhoon Rammasun (1409), which caused special strong wind and severe rainstorm in Guangxi. The results show that: 1) Typhoon Rammasun offshore sudden strengthening in one of the main reasons was that loop pressure ridge superimposed into the westward extension of subtropical high, to making enable rapid strengthening of the subtropical high, so the subtropical high advanced faster than the Rammasun move, Rammasun center of the subtropical high distance reduced and the gradient increased;2) Rammasun northward to south china coast with plenty of vapor following ITCZ, before landing, southwest monsoon and cross-equatorial flow were involved, Rammasun got latent heat of monsoon jet, enabling it to strengthen in offshore;3) Rammasun from the Qiongzhou Strait into the northern Gulf, therefore the Strait of short passages and both sides belong to the low zone, friction consumption smaller, that was the main reason what was able to maintain the strength of the super typhoon, when Rammasun into the Beibu Gulf;4) Diagnostic analysis shows that Rammasun before entering the northern Gulf and into the Beibu Gulf later, vorticity weakened, divergence and vapor flux divergence changed were smaller, meanwhile, vertical ascent speed and latent heat transport both increased, which was important reason of severe rainstorm caused by Rammasun.展开更多
In 2014,Typhoon Rammasun invaded Qinzhou,Guangxi,causing damage to the wind tower sensor at 80 m in Qinzhou.In order to restore the wind speed at 80 m at that time,this paper was based on the hourly average wind speed...In 2014,Typhoon Rammasun invaded Qinzhou,Guangxi,causing damage to the wind tower sensor at 80 m in Qinzhou.In order to restore the wind speed at 80 m at that time,this paper was based on the hourly average wind speed data of the wind tower and meteorological station from 2017–2019,and constructed the wind speed related model of Meteorological Station and the wind measuring tower in Qinzhou,Moreover,this paper Based on the hourly average wind speed data of Qinzhou Meteorological Station in 2014,Restored the hourly average wind speed of the anemometer tower during Rammasun landfalled.The results showed it is significant correlation that the hourly mean wind speed of the wind tower at 80 m and the hourly mean wind speed of meteorological station at 100 m(R2=0.9632),and speed of the wind measuring tower and speed of meteorological station constitutes an equation,This equation is Y=0.7834X.The hourly average wind speed of the wind tower at 80 m during the 2014 Rammasun Landing was restored using this model.See the results in Schedule 4.展开更多
现有的风场资料存在台风中心附近风速偏低的问题。为改进台风期间风场数据,使用Holland经验台风模型结合多平台交叉校准数据(cross-calibrated multi-platform,CCMP)及欧洲中期天气预报中心的再分析数据(European Centre for Medium-ran...现有的风场资料存在台风中心附近风速偏低的问题。为改进台风期间风场数据,使用Holland经验台风模型结合多平台交叉校准数据(cross-calibrated multi-platform,CCMP)及欧洲中期天气预报中心的再分析数据(European Centre for Medium-range Weather Forecasts Reanalysis data,ERA5)风场资料,研究了不同台风最大风速半径(maximum wind radius of the typhoon,RMW)、Holland B参数对模拟效果的影响,确定了最优模拟参数,并以改进后的风场驱动三重嵌套海浪模型对台风“威马逊”发生期间的台风浪进行模拟。模拟结果与实测数据对比表明,(1)改进的风场资料与实测结果更为接近,作为海浪模式驱动项可更好地模拟台风期间波浪状况;(2)三重嵌套海浪模型的波浪模拟效果优于单独的海浪模型。展开更多
利用NCEP资料、CMA-STI热带气旋最佳路径数据和FY系列卫星云图对超强台风"威马逊"登陆前特征和突增成因进行分析。结果表明:"威马逊"强度突增期间副高西伸脊点显著东退,高低压之间维持强的气压梯度。台风急剧发展...利用NCEP资料、CMA-STI热带气旋最佳路径数据和FY系列卫星云图对超强台风"威马逊"登陆前特征和突增成因进行分析。结果表明:"威马逊"强度突增期间副高西伸脊点显著东退,高低压之间维持强的气压梯度。台风急剧发展期间结构趋于对称化加强,高低层辐合辐散急剧发展,持续增强的正涡度柱不断向平流层上层发展,同时垂直速度不断增大从低层向上传播,这些结构都利于台风强度迅速增强。环境条件分析表明西太平洋高海温、弱的环境风垂直切变维持10 m/s以下速度,有利于凝结潜热聚集和台风"暖心"结构维持;850 h Pa上偏南气流显著增强,南侧水汽通道完全接通且水汽辐合与台风中心基本重合,促使水汽向台风中心辐合输入,是"威马逊"强度剧增的重要原因之一。展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41930967)
文摘In this study,Typhoon Rammasun(2014)was simulated using the Weather Research and Forecasting model to examine the kinetic energy during rapid intensification(RI).Budget analyses revealed that in the inner area of the typhoon,the conversion from symmetric divergent kinetic energy associated with the collocation of strong cyclonic circulation and inward flow led to an increase in the symmetric rotational kinetic energy in the lower troposphere.The increase in the symmetric rotational kinetic energy in the mid and upper troposphere resulted from the upward transport of symmetric rotational kinetic energy from the lower troposphere.In the outer area,both typhoon and Earth’s rotation played equally important roles in the conversion from symmetric divergent kinetic energy to symmetric rotational kinetic energy in the lower troposphere.The decrease in the symmetric rotational kinetic energy in the upper troposphere was caused by the conversion to asymmetric rotational kinetic energy through the collocation of symmetric tangential rotational winds and the radial advection of asymmetric tangential rotational winds by radial environmental winds.
基金National Key Project for Basic Research(973 project)(2015CB452802)National Natural Science Fund(41475102,41675099,41475061)+2 种基金Science and Technology Planning Project of Guangdong Province(2017B020218003,2017B030314140)Natural Science Foundation of Guangdong Province(2016A030313140,2017A030313225)Science and technology project of Guangdong Meteorological Bureau(GRMC2017Q01)
文摘In a limited number of ensembles, some samples do not adequately reflect the true atmospheric state and can in turn affect forecast performance. This study explored the feasibility of sample optimization using the ensemble Kalman filter(EnKF) for a simulation of the 2014 Super Typhoon Rammasun, which made landfall in southern China in July 2014. Under the premise of sufficient ensemble spread, keeping samples with a good fit to observations and eliminating those with poor fit can affect the performance of En KF. In the sample optimization, states were selected based on the sample spatial correlation between the ensemble state and observations. The method discarded ensemble states that were less representative and, to maintain the overall ensemble size, generated new ensemble states by reproducing them from ensemble states with a good fit by adding random noise. Sample selection was performed based on radar echo data. Results showed that applying En KF with optimized samples improved the estimated track, intensity,precipitation distribution, and inner-core structure of Typhoon Rammasun. Therefore, the authors proposed that distinguishing between samples with good and poor fits is vital for ensemble prediction, suggesting that sample optimization is necessary to the effective use of En KF.
基金Supported by the Key Projects of the Guangdong Education Department(No.2019KZDXM019)the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)(No.ZJW-2019-08)+1 种基金the High-level Marine Discipline Team Project of Guangdong Ocean University(No.002026002009)the“First Class”Discipline Construction Platform Project in 2019 of Guangdong Ocean University(No.231419026)。
文摘Typhoon is one of the frequent natural disasters in coastal regions of China.As shown in many studies,the impact of typhoons on the South China Sea(SCS)should not be overlooked.Super typhoon Rammasun(2014)was studied that formed in the northwestern Pacific,passed through the SCS,then landed in the Leizhou Peninsula.Remote sensing data and model products were used to analyze the spatiotemporal variations of the cold eddies,upwelling,sea surface temperature,mixed layer depth,rainfall,sea surface salinity,suspended sediment concentration,and surface-level anomaly.Results confirm the constant presence of upwelling and cold eddies in the southeast of Hainan(north of the Zhongsha Islands)and the southeast of Vietnam in July.In addition,we found the strengthening effect of super typhoon Rammasun on the upwelling and cold eddies in the SCS.The major reasons for the continuous decrease in sea surface temperature and the slow regaining of seawater temperature were the enhanced upwelling and vertical mixing caused by the typhoon.The increasing of the surface runoff in the Indochina Peninsula was mainly affected by the typhoon,with some contribution for the southeast of Vietnam’s cold eddy and upwelling.
文摘Based on conventional meteorological observation data, NCEP 1° × 1° reanalysis data, reanalysis data with resolution 0.75° × 0.75° from ECMWF and Doppler weather radar, we analyzed the weather conditions and physical characteristics of Super Typhoon Rammasun (1409), which caused special strong wind and severe rainstorm in Guangxi. The results show that: 1) Typhoon Rammasun offshore sudden strengthening in one of the main reasons was that loop pressure ridge superimposed into the westward extension of subtropical high, to making enable rapid strengthening of the subtropical high, so the subtropical high advanced faster than the Rammasun move, Rammasun center of the subtropical high distance reduced and the gradient increased;2) Rammasun northward to south china coast with plenty of vapor following ITCZ, before landing, southwest monsoon and cross-equatorial flow were involved, Rammasun got latent heat of monsoon jet, enabling it to strengthen in offshore;3) Rammasun from the Qiongzhou Strait into the northern Gulf, therefore the Strait of short passages and both sides belong to the low zone, friction consumption smaller, that was the main reason what was able to maintain the strength of the super typhoon, when Rammasun into the Beibu Gulf;4) Diagnostic analysis shows that Rammasun before entering the northern Gulf and into the Beibu Gulf later, vorticity weakened, divergence and vapor flux divergence changed were smaller, meanwhile, vertical ascent speed and latent heat transport both increased, which was important reason of severe rainstorm caused by Rammasun.
基金This work was supported by the Second Tibet Plateau Scientific Expedition and Research Program(STEP)under Grant Number 2019QZKK0804the National Natural Science Foundation of China“Study on the dynamic mechanism of grassland ecosystem response to climate change in Qinghai Plateau”under Grant Number U20A2098.
文摘In 2014,Typhoon Rammasun invaded Qinzhou,Guangxi,causing damage to the wind tower sensor at 80 m in Qinzhou.In order to restore the wind speed at 80 m at that time,this paper was based on the hourly average wind speed data of the wind tower and meteorological station from 2017–2019,and constructed the wind speed related model of Meteorological Station and the wind measuring tower in Qinzhou,Moreover,this paper Based on the hourly average wind speed data of Qinzhou Meteorological Station in 2014,Restored the hourly average wind speed of the anemometer tower during Rammasun landfalled.The results showed it is significant correlation that the hourly mean wind speed of the wind tower at 80 m and the hourly mean wind speed of meteorological station at 100 m(R2=0.9632),and speed of the wind measuring tower and speed of meteorological station constitutes an equation,This equation is Y=0.7834X.The hourly average wind speed of the wind tower at 80 m during the 2014 Rammasun Landing was restored using this model.See the results in Schedule 4.
文摘现有的风场资料存在台风中心附近风速偏低的问题。为改进台风期间风场数据,使用Holland经验台风模型结合多平台交叉校准数据(cross-calibrated multi-platform,CCMP)及欧洲中期天气预报中心的再分析数据(European Centre for Medium-range Weather Forecasts Reanalysis data,ERA5)风场资料,研究了不同台风最大风速半径(maximum wind radius of the typhoon,RMW)、Holland B参数对模拟效果的影响,确定了最优模拟参数,并以改进后的风场驱动三重嵌套海浪模型对台风“威马逊”发生期间的台风浪进行模拟。模拟结果与实测数据对比表明,(1)改进的风场资料与实测结果更为接近,作为海浪模式驱动项可更好地模拟台风期间波浪状况;(2)三重嵌套海浪模型的波浪模拟效果优于单独的海浪模型。
文摘利用常规观测资料以及海南省中尺度自动站资料、海口多普勒雷达产品、FY系列卫星云图和NECP 1°×1°再分析资料,分析了2014年第9号超强台风"威马逊"(1409)在海南岛登陆前后其强度和降水特征及其近海急剧加强的原因。结果表明:"威马逊"登陆海南省文昌市翁田镇时强度维持或略有减弱,登陆前其中心附近极大风速超过74 m·s-1,最低海平面气压899.2 h Pa,为1949年建国以来登陆我国大陆最强台风;"威马逊"从7月18日10时到当日15时登陆文昌前的5 h内,其中心附近最大风速增大了5 m·s-1,最低气压下降了20 h Pa,其超强台风量级从18日11时开始维持时间达17 h;"威马逊"眼壁回波造成的海南北部地区强降水具有降水效率高、对流发展不够强盛的混合性降水特征,而其螺旋雨带"列车效应"造成的海南西部地区极值降水则具有典型的对流性降水特征;西太平洋副热带高压、低空急流、西风槽和南亚高压是"威马逊"近海持续加强的主要影响系统;低层辐合与高层辐散、弱的环境风垂直切变和适宜的海面温度、深厚的暖涡是"威马逊"近海急剧加强的原因。
文摘利用NCEP资料、CMA-STI热带气旋最佳路径数据和FY系列卫星云图对超强台风"威马逊"登陆前特征和突增成因进行分析。结果表明:"威马逊"强度突增期间副高西伸脊点显著东退,高低压之间维持强的气压梯度。台风急剧发展期间结构趋于对称化加强,高低层辐合辐散急剧发展,持续增强的正涡度柱不断向平流层上层发展,同时垂直速度不断增大从低层向上传播,这些结构都利于台风强度迅速增强。环境条件分析表明西太平洋高海温、弱的环境风垂直切变维持10 m/s以下速度,有利于凝结潜热聚集和台风"暖心"结构维持;850 h Pa上偏南气流显著增强,南侧水汽通道完全接通且水汽辐合与台风中心基本重合,促使水汽向台风中心辐合输入,是"威马逊"强度剧增的重要原因之一。