Wireless Sensor Networks(WSNs)have hardware and software limitations and are deployed in hostile environments.The problem of energy consumption in WSNs has become a very important axis of research.To obtain good perfo...Wireless Sensor Networks(WSNs)have hardware and software limitations and are deployed in hostile environments.The problem of energy consumption in WSNs has become a very important axis of research.To obtain good performance in terms of the network lifetime,several routing protocols have been proposed in the literature.Hierarchical routing is considered to be the most favorable approach in terms of energy efficiency.It is based on the concept parent-child hierarchy where the child nodes forward their messages to their parent,and then the parent node forwards them,directly or via other parent nodes,to the base station(sink).In this paper,we present a new Energy-Efficient clustering protocol for WSNs using an Objective Function and Random Search with Jumps(EEOFRSJ)in order to reduce sensor energy consumption.First,the objective function is used to find an optimal cluster formation taking into account the ratio of the mean Euclidean distance of the nodes to their associated cluster heads(CH)and their residual energy.Then,we find the best path to transmit data from the CHs nodes to the base station(BS)using a random search with jumps.We simulated our proposed approach compared with the Energy-Efficient in WSNs using Fuzzy C-Means clustering(EEFCM)protocol using Matlab Simulink.Simulation results have shown that our proposed protocol excels regarding energy consumption,resulting in network lifetime extension.展开更多
Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstructio...Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstruction and evolution of the sampling distributions over the space of candidate solutions. Iterativeconstruction of the sampling distributions is based on the idea of the global random search of generationalmethods. Under this frame, propontional selection is characterized as a gobal search operator, and recombination is characerized as the search process that exploits similarities. It is shown-that by properly constraining the search breadth of recombination operators, weak convergence of evolutionary algorithms to aglobal optimum can be ensured.展开更多
In this paper, the improvement of pure random search is studied. By taking some information of the function to be minimized into consideration, the authors propose two stochastic global optimization algorithms. Some n...In this paper, the improvement of pure random search is studied. By taking some information of the function to be minimized into consideration, the authors propose two stochastic global optimization algorithms. Some numerical experiments for the new stochastic global optimization algorithms are presented for a class of test problems.展开更多
In this paper, we consider the planar multi-facility Weber problem with restricted zones and non-Euclidean distances, propose an algorithm based on the probability changing method (special kind of genetic algorithms) ...In this paper, we consider the planar multi-facility Weber problem with restricted zones and non-Euclidean distances, propose an algorithm based on the probability changing method (special kind of genetic algorithms) and prove its efficiency for approximate solving this problem by replacing the continuous coordinate values by discrete ones. Version of the algorithm for multiprocessor systems is proposed. Experimental results for a high-performance cluster are given.展开更多
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r...Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.展开更多
As a complex hot problem in the financial field,stock trend forecasting uses a large amount of data and many related indicators;hence it is difficult to obtain sustainable and effective results only by relying on empi...As a complex hot problem in the financial field,stock trend forecasting uses a large amount of data and many related indicators;hence it is difficult to obtain sustainable and effective results only by relying on empirical analysis.Researchers in the field of machine learning have proved that random forest can form better judgements on this kind of problem,and it has an auxiliary role in the prediction of stock trend.This study uses historical trading data of four listed companies in the USA stock market,and the purpose of this study is to improve the performance of random forest model in medium-and long-term stock trend prediction.This study applies the exponential smoothing method to process the initial data,calculates the relevant technical indicators as the characteristics to be selected,and proposes the D-RF-RS method to optimize random forest.As the random forest is an ensemble learning model and is closely related to decision tree,D-RF-RS method uses a decision tree to screen the importance of features,and obtains the effective strong feature set of the model as input.Then,the parameter combination of the model is optimized through random parameter search.The experimental results show that the average accuracy of random forest is increased by 0.17 after the above process optimization,which is 0.18 higher than the average accuracy of light gradient boosting machine model.Combined with the performance of the ROC curve and Precision–Recall curve,the stability of the model is also guaranteed,which further demonstrates the advantages of random forest in medium-and long-term trend prediction of the stock market.展开更多
In recent years,automatic program repair approaches have developed rapidly in the field of software engineering.However,the existing program repair techniques based on genetic programming suffer from requiring verific...In recent years,automatic program repair approaches have developed rapidly in the field of software engineering.However,the existing program repair techniques based on genetic programming suffer from requiring verification of a large number of candidate patches,which consume a lot of computational resources.In this paper,we propose a random search and code similarity based automatic program repair(RSCSRepair).First,to reduce the verification computation effort for candidate patches,we introduce test filtering to reduce the number of test cases and use test case prioritization techniques to reconstruct a new set of test cases.Second,we use a combination of code similarity and random search for patch generation.Finally,we use a patch overfitting detection method to improve the quality of patches.In order to verify the performance of our approach,we conducted the experiments on the Defects4J benchmark.The experimental results show that RSCSRepair correctly repairs up to 54 bugs,with improvements of 14.3%,8.5%,14.3%and 10.3%for our approach compared with jKali,Nopol,CapGen and Sim Fix,respectively.展开更多
Unstructured P2P has power-law link distribution, and the random walk in power-law networks is analyzed. The analysis results show that the probability that a random walker walks through the high degree nodes is high ...Unstructured P2P has power-law link distribution, and the random walk in power-law networks is analyzed. The analysis results show that the probability that a random walker walks through the high degree nodes is high in the power-law network, and the information on the high degree nodes can be easily found through random walk. Random walk spread and random walk search method (RWSS) is proposed based on the analysis result. Simulation results show that RWSS achieves high success rates at low cost and is robust to high degree node failure.展开更多
This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the se...This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the search on the graph to the multi-solution case, it can be applied to analyze the multi-solution case of quantum random-walk search on the graph directly. Thus, the computational complexity of the optimized quantum random-walk search algorithm for the multi-solution search is obtained. Through numerical simulations and analysis, we obtain a critical value of the proportion of solutions q. For a given q, we derive the relationship between the success rate of the algorithm and the number of iterations when q is no longer than the critical value.展开更多
The present paper is focused on non-uniform quantum coins for the quantum random walk search algorithm. This is an alternative to the modification of the shift operator, which divides the search space into two parts. ...The present paper is focused on non-uniform quantum coins for the quantum random walk search algorithm. This is an alternative to the modification of the shift operator, which divides the search space into two parts. This method changes the quantum coins, while the shift operator remains unchanged and sustains the hypercube topology. The results discussed in this paper are obtained by both theoretical calculations and numerical simulations.展开更多
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the opt...This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative.展开更多
In this paper, we study the quasi-coordinated search technique for a lost target assumed to move randomly on one of two disjoint lines according to a random walk motion, where there are two searchers beginning their s...In this paper, we study the quasi-coordinated search technique for a lost target assumed to move randomly on one of two disjoint lines according to a random walk motion, where there are two searchers beginning their search from the origin on the first line and other two searchers begin their search from the origin on the second line. But the motion of the two searchers on the first line is independent from the motion of the other two searchers on the second line. Here we introduce a model of search plan and investigate the expected value of the first meeting time between one of the searchers and the lost target. Also, we prove the existence of a search plan which minimizes the expected value of the first meeting time between one of the searchers and the target.展开更多
A linear random search algorithm(LRSA) is developed to determine the critical value of takeoff weight limited to the safe flight track sinkage and an engineering estimation method(EEM) is proposed to calculate the sin...A linear random search algorithm(LRSA) is developed to determine the critical value of takeoff weight limited to the safe flight track sinkage and an engineering estimation method(EEM) is proposed to calculate the sinkage of carrier aircraft launch in real time. Based on the analysis of free flight after leaving the carrier, the equations are established to participate into engineering estimation of flight track sinkage. Thanks to the proposed search algorithm, the maximum takeoff weight of carrier aircraft with safe catapult launch flight track sinkage is generated in few steps. The results of sinkage estimation and the search algorithm are in good agreement with that of aircraft catapult launch simulation. The main contribution of this manuscript is the establishment of simple and accurate engineering estimation for carrier aircraft launch flight track sinkage and the development of robust and efficient search algorithm for the critical value with safe catapult criteria.展开更多
Coronary artery disease(CAD)is one of themost authentic cardiovascular afflictions because it is an uncommonly overwhelming heart issue.The breakdown of coronary cardiovascular disease is one of the principal sources ...Coronary artery disease(CAD)is one of themost authentic cardiovascular afflictions because it is an uncommonly overwhelming heart issue.The breakdown of coronary cardiovascular disease is one of the principal sources of death all over theworld.Cardiovascular deterioration is a challenge,especially in youthful and rural countries where there is an absence of humantrained professionals.Since heart diseases happen without apparent signs,high-level detection is desirable.This paper proposed a robust and tuned random forest model using the randomized grid search technique to predictCAD.The proposed framework increases the ability of CADpredictions by tracking down risk pointers and learning the confusing joint efforts between them.Nowadays,the healthcare industry has a lot of data but needs to gain more knowledge.Our proposed framework is used for extracting knowledge from data stores and using that knowledge to help doctors accurately and effectively diagnose heart disease(HD).We evaluated the proposed framework over two public databases,Cleveland and Framingham datasets.The datasets were preprocessed by using a cleaning technique,a normalization technique,and an outlier detection technique.Secondly,the principal component analysis(PCA)algorithm was utilized to lessen the feature dimensionality of the two datasets.Finally,we used a hyperparameter tuning technique,randomized grid search,to tune a random forest(RF)machine learning(ML)model.The randomized grid search selected the best parameters and got the ideal CAD analysis.The proposed framework was evaluated and compared with traditional classifiers.Our proposed framework’s accuracy,sensitivity,precision,specificity,and f1-score were 100%.The evaluation of the proposed framework showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing frameworks.展开更多
This paper presents the search technique for a lost target. A lost target is random walker on one of two intersected real lines, and the purpose is to detect the target as fast as possible. We have four searchers star...This paper presents the search technique for a lost target. A lost target is random walker on one of two intersected real lines, and the purpose is to detect the target as fast as possible. We have four searchers start from the point of intersection, they follow the so called Quasi-Coordinated search plan. The expected value of the first meeting time between one of the searchers and the target is investigated, also we show the existence of the optimal search strategy which minimizes this first meeting time.展开更多
This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this ...This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover's algorithm.展开更多
A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of hu...A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems.展开更多
To solve vehicle routing problem with different fleets, two methodologies are developed. The first methodology adopts twophase strategy. In the first phase, the improved savings method is used to assign customers to a...To solve vehicle routing problem with different fleets, two methodologies are developed. The first methodology adopts twophase strategy. In the first phase, the improved savings method is used to assign customers to appropriate vehicles. In the second phase, the iterated dynasearch algorithm is adopted to route each selected vehicle with the assigned customers. The iterated dynasearch algorithm combines dynasearch algorithm with iterated local search algorithm based on random kicks. The second methodplogy adopts the idea of cyclic transfer which is performed by using dynamic programming algorithm, and the iterated dynasearch algorithm is also embedded in it. The test results show that both methodologies generate better solutions than the traditional method, and the second methodology is superior to the first one.展开更多
Objective To propose a new dynamic extremum self searching method, which can be used in industrial processes extremum optimum control systems, to overcome the disadvantages of traditional method. Methods This algor...Objective To propose a new dynamic extremum self searching method, which can be used in industrial processes extremum optimum control systems, to overcome the disadvantages of traditional method. Methods This algorithm is based on correlation analysis. A pseudo random binary signal m sequence u(t) is added as probe signal in system input, construct cross correlation function between system input and output, the next step hunting direction is judged by the differential sign. Results Compared with traditional algorithm such as step forward hunting method, the iterative efficient, hunting precision and anti interference ability of the correlation analysis method is obvious over the traditional algorithm. The computer simulation experimental given illustrate these viewpoints. Conclusion The correlation analysis method can settle the optimum state point of device operating process. It has the advantage of easy condition , simple calculate process.展开更多
Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is graduall...Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is gradually becoming a trend.In this study,the integrated algorithms under Gradient Boosting Decision Tree(GBDT)framework were used to evaluate and classify rockburst intensity.First,a total of 301 rock burst data samples were obtained from a case database,and the data were preprocessed using synthetic minority over-sampling technique(SMOTE).Then,the rockburst evaluation models including GBDT,eXtreme Gradient Boosting(XGBoost),Light Gradient Boosting Machine(LightGBM),and Categorical Features Gradient Boosting(CatBoost)were established,and the optimal hyperparameters of the models were obtained through random search grid and five-fold cross-validation.Afterwards,use the optimal hyperparameter configuration to fit the evaluation models,and analyze these models using test set.In order to evaluate the performance,metrics including accuracy,precision,recall,and F1-score were selected to analyze and compare with other machine learning models.Finally,the trained models were used to conduct rock burst risk assessment on rock samples from a mine in Shanxi Province,China,and providing theoretical guidance for the mine's safe production work.The models under the GBDT framework perform well in the evaluation of rockburst levels,and the proposed methods can provide a reliable reference for rockburst risk level analysis and safety management.展开更多
文摘Wireless Sensor Networks(WSNs)have hardware and software limitations and are deployed in hostile environments.The problem of energy consumption in WSNs has become a very important axis of research.To obtain good performance in terms of the network lifetime,several routing protocols have been proposed in the literature.Hierarchical routing is considered to be the most favorable approach in terms of energy efficiency.It is based on the concept parent-child hierarchy where the child nodes forward their messages to their parent,and then the parent node forwards them,directly or via other parent nodes,to the base station(sink).In this paper,we present a new Energy-Efficient clustering protocol for WSNs using an Objective Function and Random Search with Jumps(EEOFRSJ)in order to reduce sensor energy consumption.First,the objective function is used to find an optimal cluster formation taking into account the ratio of the mean Euclidean distance of the nodes to their associated cluster heads(CH)and their residual energy.Then,we find the best path to transmit data from the CHs nodes to the base station(BS)using a random search with jumps.We simulated our proposed approach compared with the Energy-Efficient in WSNs using Fuzzy C-Means clustering(EEFCM)protocol using Matlab Simulink.Simulation results have shown that our proposed protocol excels regarding energy consumption,resulting in network lifetime extension.
文摘Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstruction and evolution of the sampling distributions over the space of candidate solutions. Iterativeconstruction of the sampling distributions is based on the idea of the global random search of generationalmethods. Under this frame, propontional selection is characterized as a gobal search operator, and recombination is characerized as the search process that exploits similarities. It is shown-that by properly constraining the search breadth of recombination operators, weak convergence of evolutionary algorithms to aglobal optimum can be ensured.
文摘In this paper, the improvement of pure random search is studied. By taking some information of the function to be minimized into consideration, the authors propose two stochastic global optimization algorithms. Some numerical experiments for the new stochastic global optimization algorithms are presented for a class of test problems.
文摘In this paper, we consider the planar multi-facility Weber problem with restricted zones and non-Euclidean distances, propose an algorithm based on the probability changing method (special kind of genetic algorithms) and prove its efficiency for approximate solving this problem by replacing the continuous coordinate values by discrete ones. Version of the algorithm for multiprocessor systems is proposed. Experimental results for a high-performance cluster are given.
基金Under the auspices of National Natural Science Foundation of China(No.52079103)。
文摘Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.
基金National Natural Science Foundation of China,Grant/Award Numbers:61673084,National Natural Science Foundation of ChinaThe Fundamental Research Foundation for Universities of Heilongjiang Province,Grant/Award Number:LGYC2018JC017。
文摘As a complex hot problem in the financial field,stock trend forecasting uses a large amount of data and many related indicators;hence it is difficult to obtain sustainable and effective results only by relying on empirical analysis.Researchers in the field of machine learning have proved that random forest can form better judgements on this kind of problem,and it has an auxiliary role in the prediction of stock trend.This study uses historical trading data of four listed companies in the USA stock market,and the purpose of this study is to improve the performance of random forest model in medium-and long-term stock trend prediction.This study applies the exponential smoothing method to process the initial data,calculates the relevant technical indicators as the characteristics to be selected,and proposes the D-RF-RS method to optimize random forest.As the random forest is an ensemble learning model and is closely related to decision tree,D-RF-RS method uses a decision tree to screen the importance of features,and obtains the effective strong feature set of the model as input.Then,the parameter combination of the model is optimized through random parameter search.The experimental results show that the average accuracy of random forest is increased by 0.17 after the above process optimization,which is 0.18 higher than the average accuracy of light gradient boosting machine model.Combined with the performance of the ROC curve and Precision–Recall curve,the stability of the model is also guaranteed,which further demonstrates the advantages of random forest in medium-and long-term trend prediction of the stock market.
基金the Cultivation Programme for Young Backbone Teachers in Henan University of Technology,the Key Scientific Research Project of Colleges and Universities in Henan Province(No.22A520024)the Major Public Welfare Project of Henan Province(No.201300311200)the National Natural Science Foundation of China(Nos.61602154 and 61340037)。
文摘In recent years,automatic program repair approaches have developed rapidly in the field of software engineering.However,the existing program repair techniques based on genetic programming suffer from requiring verification of a large number of candidate patches,which consume a lot of computational resources.In this paper,we propose a random search and code similarity based automatic program repair(RSCSRepair).First,to reduce the verification computation effort for candidate patches,we introduce test filtering to reduce the number of test cases and use test case prioritization techniques to reconstruct a new set of test cases.Second,we use a combination of code similarity and random search for patch generation.Finally,we use a patch overfitting detection method to improve the quality of patches.In order to verify the performance of our approach,we conducted the experiments on the Defects4J benchmark.The experimental results show that RSCSRepair correctly repairs up to 54 bugs,with improvements of 14.3%,8.5%,14.3%and 10.3%for our approach compared with jKali,Nopol,CapGen and Sim Fix,respectively.
文摘Unstructured P2P has power-law link distribution, and the random walk in power-law networks is analyzed. The analysis results show that the probability that a random walker walks through the high degree nodes is high in the power-law network, and the information on the high degree nodes can be easily found through random walk. Random walk spread and random walk search method (RWSS) is proposed based on the analysis result. Simulation results show that RWSS achieves high success rates at low cost and is robust to high degree node failure.
基金supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the search on the graph to the multi-solution case, it can be applied to analyze the multi-solution case of quantum random-walk search on the graph directly. Thus, the computational complexity of the optimized quantum random-walk search algorithm for the multi-solution search is obtained. Through numerical simulations and analysis, we obtain a critical value of the proportion of solutions q. For a given q, we derive the relationship between the success rate of the algorithm and the number of iterations when q is no longer than the critical value.
文摘The present paper is focused on non-uniform quantum coins for the quantum random walk search algorithm. This is an alternative to the modification of the shift operator, which divides the search space into two parts. This method changes the quantum coins, while the shift operator remains unchanged and sustains the hypercube topology. The results discussed in this paper are obtained by both theoretical calculations and numerical simulations.
基金supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative.
文摘In this paper, we study the quasi-coordinated search technique for a lost target assumed to move randomly on one of two disjoint lines according to a random walk motion, where there are two searchers beginning their search from the origin on the first line and other two searchers begin their search from the origin on the second line. But the motion of the two searchers on the first line is independent from the motion of the other two searchers on the second line. Here we introduce a model of search plan and investigate the expected value of the first meeting time between one of the searchers and the lost target. Also, we prove the existence of a search plan which minimizes the expected value of the first meeting time between one of the searchers and the target.
文摘A linear random search algorithm(LRSA) is developed to determine the critical value of takeoff weight limited to the safe flight track sinkage and an engineering estimation method(EEM) is proposed to calculate the sinkage of carrier aircraft launch in real time. Based on the analysis of free flight after leaving the carrier, the equations are established to participate into engineering estimation of flight track sinkage. Thanks to the proposed search algorithm, the maximum takeoff weight of carrier aircraft with safe catapult launch flight track sinkage is generated in few steps. The results of sinkage estimation and the search algorithm are in good agreement with that of aircraft catapult launch simulation. The main contribution of this manuscript is the establishment of simple and accurate engineering estimation for carrier aircraft launch flight track sinkage and the development of robust and efficient search algorithm for the critical value with safe catapult criteria.
文摘Coronary artery disease(CAD)is one of themost authentic cardiovascular afflictions because it is an uncommonly overwhelming heart issue.The breakdown of coronary cardiovascular disease is one of the principal sources of death all over theworld.Cardiovascular deterioration is a challenge,especially in youthful and rural countries where there is an absence of humantrained professionals.Since heart diseases happen without apparent signs,high-level detection is desirable.This paper proposed a robust and tuned random forest model using the randomized grid search technique to predictCAD.The proposed framework increases the ability of CADpredictions by tracking down risk pointers and learning the confusing joint efforts between them.Nowadays,the healthcare industry has a lot of data but needs to gain more knowledge.Our proposed framework is used for extracting knowledge from data stores and using that knowledge to help doctors accurately and effectively diagnose heart disease(HD).We evaluated the proposed framework over two public databases,Cleveland and Framingham datasets.The datasets were preprocessed by using a cleaning technique,a normalization technique,and an outlier detection technique.Secondly,the principal component analysis(PCA)algorithm was utilized to lessen the feature dimensionality of the two datasets.Finally,we used a hyperparameter tuning technique,randomized grid search,to tune a random forest(RF)machine learning(ML)model.The randomized grid search selected the best parameters and got the ideal CAD analysis.The proposed framework was evaluated and compared with traditional classifiers.Our proposed framework’s accuracy,sensitivity,precision,specificity,and f1-score were 100%.The evaluation of the proposed framework showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing frameworks.
文摘This paper presents the search technique for a lost target. A lost target is random walker on one of two intersected real lines, and the purpose is to detect the target as fast as possible. We have four searchers start from the point of intersection, they follow the so called Quasi-Coordinated search plan. The expected value of the first meeting time between one of the searchers and the target is investigated, also we show the existence of the optimal search strategy which minimizes this first meeting time.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover's algorithm.
基金supported by the Doctor Students Innovation Foundation of Southwest Jiaotong University.
文摘A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems.
基金The National Natural Science Founda-tion of China ( No.70471039)the National Social Science Foundation of China (No.07BJY038)the Program for New Century Excellent Talents in University (No.NCET-04-0886)
文摘To solve vehicle routing problem with different fleets, two methodologies are developed. The first methodology adopts twophase strategy. In the first phase, the improved savings method is used to assign customers to appropriate vehicles. In the second phase, the iterated dynasearch algorithm is adopted to route each selected vehicle with the assigned customers. The iterated dynasearch algorithm combines dynasearch algorithm with iterated local search algorithm based on random kicks. The second methodplogy adopts the idea of cyclic transfer which is performed by using dynamic programming algorithm, and the iterated dynasearch algorithm is also embedded in it. The test results show that both methodologies generate better solutions than the traditional method, and the second methodology is superior to the first one.
文摘Objective To propose a new dynamic extremum self searching method, which can be used in industrial processes extremum optimum control systems, to overcome the disadvantages of traditional method. Methods This algorithm is based on correlation analysis. A pseudo random binary signal m sequence u(t) is added as probe signal in system input, construct cross correlation function between system input and output, the next step hunting direction is judged by the differential sign. Results Compared with traditional algorithm such as step forward hunting method, the iterative efficient, hunting precision and anti interference ability of the correlation analysis method is obvious over the traditional algorithm. The computer simulation experimental given illustrate these viewpoints. Conclusion The correlation analysis method can settle the optimum state point of device operating process. It has the advantage of easy condition , simple calculate process.
基金Project(52161135301)supported by the International Cooperation and Exchange of the National Natural Science Foundation of ChinaProject(202306370296)supported by China Scholarship Council。
文摘Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is gradually becoming a trend.In this study,the integrated algorithms under Gradient Boosting Decision Tree(GBDT)framework were used to evaluate and classify rockburst intensity.First,a total of 301 rock burst data samples were obtained from a case database,and the data were preprocessed using synthetic minority over-sampling technique(SMOTE).Then,the rockburst evaluation models including GBDT,eXtreme Gradient Boosting(XGBoost),Light Gradient Boosting Machine(LightGBM),and Categorical Features Gradient Boosting(CatBoost)were established,and the optimal hyperparameters of the models were obtained through random search grid and five-fold cross-validation.Afterwards,use the optimal hyperparameter configuration to fit the evaluation models,and analyze these models using test set.In order to evaluate the performance,metrics including accuracy,precision,recall,and F1-score were selected to analyze and compare with other machine learning models.Finally,the trained models were used to conduct rock burst risk assessment on rock samples from a mine in Shanxi Province,China,and providing theoretical guidance for the mine's safe production work.The models under the GBDT framework perform well in the evaluation of rockburst levels,and the proposed methods can provide a reliable reference for rockburst risk level analysis and safety management.