This paper systematically studies the convergence behavior of rank filters. The problem of convergence behavior of rank filters has been solved completely for bounded sequences. Moreover, some properties of its limiti...This paper systematically studies the convergence behavior of rank filters. The problem of convergence behavior of rank filters has been solved completely for bounded sequences. Moreover, some properties of its limiting sequences and recurrent sequences are obtained.展开更多
已有的社会化协同排序推荐算法的研究只是简单地融入用户的社交网络信息,没有考虑用户之间社会化信任网络的传递性;同时,该推荐算法的性能面临数据高度稀疏性问题的挑战.为了进一步解决这些问题,在传统的协同排序推荐算法(ListRank,List...已有的社会化协同排序推荐算法的研究只是简单地融入用户的社交网络信息,没有考虑用户之间社会化信任网络的传递性;同时,该推荐算法的性能面临数据高度稀疏性问题的挑战.为了进一步解决这些问题,在传统的协同排序推荐算法(ListRank,List-wise Learning to Rank)和最新的社会化协同过滤算法(TrustMF,Social Collaborative Filtering by Trust)的基础上,提出了一种新的社会化协同排序推荐算法(TLRank),融合均高度稀疏的用户的显式评分数据和社会化信任网络数据,以进一步增强协同排序推荐算法的性能.实验结果表明:在各个评价指标下,TLRank算法的性能均优于几个经典的协同排序推荐算法,且复杂度低、运算时间与评分点个数线性相关;TLRank算法的推荐精度高、可扩展性好,适合处理大数据,可广泛运用于互联网信息推荐领域.展开更多
Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structure...Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structured light image, a ranked-order based adaptively extremum median (RAEM) filter algorithm on salt and pepper noise is presented. In the algorithm, firstly effective points and noise points in a filtering window are differentiated; then the gray values of noise points are replaced by the medium of gray values of the effective pixels, with the efficient points' gray values unchanged; in the end this algorithm is proved to be efficient by experiments. Experimental resuits demonstrate that the image blur, resulting into proposed algorithm can remove noise points effectively and minimize the protecting the edge information as much as possible.展开更多
基金This work was supported by the China Doctoral Research Foundation and the National Natural Science Foundation of China(Grant No.10171050).
文摘This paper systematically studies the convergence behavior of rank filters. The problem of convergence behavior of rank filters has been solved completely for bounded sequences. Moreover, some properties of its limiting sequences and recurrent sequences are obtained.
文摘已有的社会化协同排序推荐算法的研究只是简单地融入用户的社交网络信息,没有考虑用户之间社会化信任网络的传递性;同时,该推荐算法的性能面临数据高度稀疏性问题的挑战.为了进一步解决这些问题,在传统的协同排序推荐算法(ListRank,List-wise Learning to Rank)和最新的社会化协同过滤算法(TrustMF,Social Collaborative Filtering by Trust)的基础上,提出了一种新的社会化协同排序推荐算法(TLRank),融合均高度稀疏的用户的显式评分数据和社会化信任网络数据,以进一步增强协同排序推荐算法的性能.实验结果表明:在各个评价指标下,TLRank算法的性能均优于几个经典的协同排序推荐算法,且复杂度低、运算时间与评分点个数线性相关;TLRank算法的推荐精度高、可扩展性好,适合处理大数据,可广泛运用于互联网信息推荐领域.
基金Supported by the National Natural Science Foundation of China(61273346)the National Defense Key Fundamental Research Program of China(A20130010)the Program for the Fundamental Research of Beijing Institute of Technology(2016CX02010)
文摘Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structured light image, a ranked-order based adaptively extremum median (RAEM) filter algorithm on salt and pepper noise is presented. In the algorithm, firstly effective points and noise points in a filtering window are differentiated; then the gray values of noise points are replaced by the medium of gray values of the effective pixels, with the efficient points' gray values unchanged; in the end this algorithm is proved to be efficient by experiments. Experimental resuits demonstrate that the image blur, resulting into proposed algorithm can remove noise points effectively and minimize the protecting the edge information as much as possible.